Read More
Date: 15-3-2021
1538
Date: 22-2-2021
1171
Date: 23-4-2021
1037
|
A Poisson process is a process satisfying the following properties:
1. The numbers of changes in nonoverlapping intervals are independent for all intervals.
2. The probability of exactly one change in a sufficiently small interval is , where is the probability of one change and is the number of trials.
3. The probability of two or more changes in a sufficiently small interval is essentially 0.
In the limit of the number of trials becoming large, the resulting distribution is called a Poisson distribution.
REFERENCES:
Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 548-549, 1984.
Ross, S. M. Stochastic Processes, 2nd ed. New York: Wiley, p. 59, 1996.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|