المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

رواية ابي ذر الغفاري في تأليف القرآن ونظمه من قبل بعض الاصحاب 
2023-11-30
الشبهة المقرونة بالعلم الإجمالي
11-9-2016
طاقة التأثير المتبادل
7-2-2022
مباحث علم الدلالة (أقسام الدلالة)
28-4-2018
Clauses
5-8-2022
Subtilisin Carlsberg
26-4-2020

Poisson Process  
  
1123   03:58 مساءً   date: 19-4-2021
Author : Ross, S. M.
Book or Source : Stochastic Processes, 2nd ed. New York: Wiley
Page and Part : ...


Read More
Date: 18-4-2021 1570
Date: 18-4-2021 1273
Date: 6-2-2021 1030

Poisson Process

A Poisson process is a process satisfying the following properties:

1. The numbers of changes in nonoverlapping intervals are independent for all intervals.

2. The probability of exactly one change in a sufficiently small interval  is , where nu is the probability of one change and n is the number of trials.

3. The probability of two or more changes in a sufficiently small interval h is essentially 0.

In the limit of the number of trials becoming large, the resulting distribution is called a Poisson distribution.


 

REFERENCES:

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 548-549, 1984.

Ross, S. M. Stochastic Processes, 2nd ed. New York: Wiley, p. 59, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.