المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الْإِسْلَام والتمييز شرطان لصحة الصلاة وتمرين الصبي على الصلاة
22-8-2017
الخصخصـة في أوربـا الغربيـة
22-7-2021
السموم الطيارة
8-4-2016
كيفية التيمم
2024-03-02
المقدمــــــــــــة
3-8-2016
الماء الذي يغسل به الميت
2024-04-09

Star Graph  
  
2282   04:48 مساءً   date: 23-3-2022
Author : Akers, S.; Harel, D.; and Krishnamurthy, B.
Book or Source : "The Star Graph: An Attractive Alternative to the n-Cube." In Proc. International Conference of Parallel Processing,
Page and Part : ...


Read More
Date: 22-3-2022 1334
Date: 23-4-2022 1986
Date: 14-4-2022 1534

Star Graph

 

StarGraphs

The star graph S_n of order n, sometimes simply known as an "n-star" (Harary 1994, pp. 17-18; Pemmaraju and Skiena 2003, p. 248; Tutte 2005, p. 23), is a tree on n nodes with one node having vertex degree n-1 and the other n-1 having vertex degree 1. The star graph S_n is therefore isomorphic to the complete bipartite graph K_(1,n-1) (Skiena 1990, p. 146).

Note that there are two conventions for the indexing for star graphs, with some authors (e.g., Gallian 2007), adopting the convention that S_n denotes the star graph on n+1 nodes.

S_4 is isomorphic to "the" claw graph. A star graph is sometimes termed a "claw" (Hoffman 1960) or a "cherry" (Erdős and Rényi 1963; Harary 1994, p. 17).

Star graphs S_n are always graceful. Star graphs can be constructed in the Wolfram Language using StarGraph[n]. Precomputed properties of star graphs are available via GraphData[{"Star"n}].

The chromatic polynomial of S_n is given by

 pi_(s_n)(z)=z(z-1)^(n-1),

and the chromatic number is 1 for n=1, and chi(S_n)=2 otherwise.

The line graph of the star graph S_n is the complete graph K_(n-1).

Note that n-stars should not be confused with the "permutation" n-star graph (Akers et al. 1987) and their generalizations known as (n,k)-star graphs (Chiang and Chen 1995) encountered in computer science and information processing.


REFERENCES

Akers, S.; Harel, D.; and Krishnamurthy, B. "The Star Graph: An Attractive Alternative to the n-Cube." In Proc. International Conference of Parallel Processing, pp. 393-400, 1987.

Chiang, W.-K. and Chen, R.-J. "The (n,k)-Star Graph: A Generalized Star Graph." Information Proc. Lett. 56, 259-264, 1995.

Erdős, P. and Rényi, A. "Asymmetric Graphs." Acta Math. Acad. Sci. Hungar. 14, 295-315, 1963.

Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018.

 https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Hoffman, A. J. "On the Uniqueness of the Triangular Association Scheme." Ann. Math. Stat. 31, 492-497, 1960.

Pemmaraju, S. and Skiena, S. "Cycles, Stars, and Wheels." §6.2.4 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 248-249, 2003.

Skiena, S. "Cycles, Stars, and Wheels." §4.2.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 83 and 144-147, 1990.

Tutte, W. T. Graph Theory. Cambridge, England: Cambridge University Press, 2005.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.