Read More
Date: 12-5-2020
634
Date: 7-1-2021
529
Date: 8-11-2020
624
|
The Legendre symbol is a number theoretic function which is defined to be equal to depending on whether is a quadratic residue modulo . The definition is sometimes generalized to have value 0 if ,
(1) |
If is an odd prime, then the Jacobi symbol reduces to the Legendre symbol. The Legendre symbol is implemented in the Wolfram Language via the Jacobi symbol, JacobiSymbol[a, p].
The Legendre symbol obeys the identity
(2) |
Particular identities include
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
(Nagell 1951, p. 144), as well as the general
(7) |
when and are both odd primes.
In general,
(8) |
if is an odd prime.
REFERENCES:
Guy, R. K. "Quadratic Residues. Schur's Conjecture." §F5 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 244-245, 1994.
Hardy, G. H. and Wright, E. M. "Quadratic Residues." §6.5 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 67-68, 1979.
Jones, G. A. and Jones, J. M. "The Legendre Symbol." §7.3 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 123-129, 1998.
Nagell, T. "Euler's Criterion and Legendre's Symbol." §38 in Introduction to Number Theory. New York: Wiley, pp. 133-136, 1951.
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 33-34 and 40-42, 1993.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|