Read More
Date: 3-2-2021
![]()
Date: 30-1-2020
![]()
Date: 18-11-2019
![]() |
The Legendre symbol is a number theoretic function which is defined to be equal to
depending on whether
is a quadratic residue modulo
. The definition is sometimes generalized to have value 0 if
,
![]() |
(1) |
If is an odd prime, then the Jacobi symbol reduces to the Legendre symbol. The Legendre symbol is implemented in the Wolfram Language via the Jacobi symbol, JacobiSymbol[a, p].
The Legendre symbol obeys the identity
![]() |
(2) |
Particular identities include
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(Nagell 1951, p. 144), as well as the general
![]() |
(7) |
when and
are both odd primes.
In general,
![]() |
(8) |
if is an odd prime.
REFERENCES:
Guy, R. K. "Quadratic Residues. Schur's Conjecture." §F5 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 244-245, 1994.
Hardy, G. H. and Wright, E. M. "Quadratic Residues." §6.5 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 67-68, 1979.
Jones, G. A. and Jones, J. M. "The Legendre Symbol." §7.3 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 123-129, 1998.
Nagell, T. "Euler's Criterion and Legendre's Symbol." §38 in Introduction to Number Theory. New York: Wiley, pp. 133-136, 1951.
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 33-34 and 40-42, 1993.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|