المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الرياح داخل المرتفعات الجوية
2025-04-10
الفسفور Phosphorus
2025-04-10
التوزيع الجغرافي للمرتفعات الجوية على سطح الأرض
2025-04-10
التركيب العمودي للمرتفعات الباردة والمرتفعات الدافئة
2025-04-10
المرتفع الجوي الحاجزي (Blocking)
2025-04-10
الطرد المركزي
2025-04-10

ما أعده الله تعالى لمحبيه
31-01-2015
خـطوات التـحسيـن المـستمـر فـي المنظمـة
2024-11-04
التكبير
2025-03-26
تسميد الشعير
7/12/2022
شعر الفتوح
5-7-2021
أنواع الحج
15-8-2017

Reciprocal  
  
1566   11:46 صباحاً   date: 18-11-2019
Author : Lachlan, R
Book or Source : An Elementary Treatise on Modern Pure Geometry. London: Macmillian, 1893.
Page and Part : ...


Read More
Date: 2-4-2020 996
Date: 9-8-2020 909
Date: 25-3-2020 768

Reciprocal

Reciprocal

The reciprocal of a real or complex number z!=0 is its multiplicative inverse 1/z=z^(-1), i.e., z to the power -1. The reciprocal of zero is undefined. A plot of the reciprocal of a real number x is plotted above for -2<=x<=2.

Two numbers are reciprocals if and only if their product is 1. To put it another way, a number and its reciprocal are inversely related. Therefore, the larger a (positive) number, the smaller its reciprocal.

ReciprocalReImReciprocalContours

The reciprocal of a complex number z=x+iy is given by

 1/(x+iy)=(x-iy)/(x^2+y^2)=x/(x^2+y^2)-y/(x^2+y^2)i.

Plots of the reciprocal in the complex plane are given above.

Given a geometric figure consisting of an assemblage of points, the polars with respect to an inversion circle constitute another figure. These figures are said to be reciprocal with respect to each other. Then there exists a duality principle which states that theorems for the original figure can be immediately applied to the reciprocal figure after suitable modification (Lachlan 1893).

 


 

REFERENCES:

Lachlan, R. An Elementary Treatise on Modern Pure Geometry. London: Macmillian, 1893.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.