المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر


Elliptic Curve  
  
1045   02:05 صباحاً   date: 6-7-2020
Author : Atkin, A. O. L. and Morain, F.
Book or Source : "Elliptic Curves and Primality Proving." Math. Comput. 61
Page and Part : ...


Read More
Date: 27-11-2019 599
Date: 15-3-2020 1482
Date: 3-6-2020 606

Elliptic Curve

Informally, an elliptic curve is a type of cubic curve whose solutions are confined to a region of space that is topologically equivalent to a torus. The Weierstrass elliptic function P(z;g_2,g_3) describes how to get from this torus to the algebraic form of an elliptic curve.

Formally, an elliptic curve over a field K is a nonsingular cubic curve in two variables, f(X,Y)=0, with a K-rational point (which may be a point at infinity). The field K is usually taken to be the complex numbers C, reals R, rationals Q, algebraic extensions of Qp-adic numbers Q_p, or a finite field.

By an appropriate change of variables, a general elliptic curve over a field with field characteristic !=2,3, a general cubic curve

 Ax^3+Bx^2y+Cxy^2+Dy^3+Ex^2+Fxy+Gy^2+Hx+Iy+J=0,

(1)

where AB, ..., are elements of K, can be written in the form

 y^2=x^3+ax+b,

(2)

where the right side of (2) has no repeated factors. Any elliptic curve not of characteristic 2 or 3 can also be written in Legendre normal form

 y^2=x(x-1)(x-lambda)

(3)

(Hartshorne 1999).

EllipticCurves

Elliptic curves are illustrated above for various values of a and b.

If K has field characteristic three, then the best that can be done is to transform the curve into

 y^2=x^3+ax^2+bx+c

(4)

(the x^2 term cannot be eliminated). If K has field characteristic two, then the situation is even worse. A general form into which an elliptic curve over any K can be transformed is called the Weierstrass form, and is given by

 y^2+ay=x^3+bx^2+cxy+dx+e,

(5)

where abcd, and e are elements of K. Luckily, QR, and C all have field characteristic zero.

An elliptic curve of the form y^2=x^3+n for n an integer is known as a Mordell curve.

Whereas conic sections can be parameterized by the rational functions, elliptic curves cannot. The simplest parameterization functions are elliptic functions. Abelian varieties can be viewed as generalizations of elliptic curves.

EllipticCurve

If the underlying field of an elliptic curve is algebraically closed, then a straight line cuts an elliptic curve at three points (counting multiple roots at points of tangency). If two are known, it is possible to compute the third. If two of the intersection points are K-rational, then so is the third. Mazur and Tate (1973/74) proved that there is no elliptic curve over Q having a rational point of order 13.

Let (x_1,y_1) and (x_2,y_2) be two points on an elliptic curve E with elliptic discriminant

 Delta_E=-16(4a^3+27b^2)

(6)

satisfying

 Delta_E!=0.

(7)

A related quantity known as the j-invariant of E is defined as

 j(E)=(2^83^3a^3)/(4a^3+27b^2).

(8)

Now define

 lambda={(y_1-y_2)/(x_1-x_2)   for x_1!=x_2; (3x_1^2+a)/(2y_1)   for x_1=x_2.

(9)

Then the coordinates of the third point are

x_3 = lambda^2-x_1-x_2

(10)

y_3 = lambda(x_3-x_1)+y_1.

(11)

For elliptic curves over Q, Mordell proved that there are a finite number of integral solutions. The Mordell-Weil theorem says that the group of rational points of an elliptic curve over Q is finitely generated. Let the roots of y^2 be r_1r_2, and r_3. The discriminant is then

 Delta=k(r_1-r_2)^2(r_1-r_3)^2(r_2-r_3)^2.

(12)

The amazing Taniyama-Shimura conjecture states that all rational elliptic curves are also modular. This fact is far from obvious, and despite the fact that the conjecture was proposed in 1955, it was not even partially proved until 1995. Even so, Wiles' proof for the semistable case surprised most mathematicians, who had believed the conjecture unassailable. As a side benefit, Wiles' proof of the Taniyama-Shimura conjecture also laid to rest the famous and thorny problem which had baffled mathematicians for hundreds of years, Fermat's last theorem.

Curves with small j-conductors are listed in Swinnerton-Dyer (1975) and Cremona (1997). Methods for computing integral points (points with integral coordinates) are given in Gebel et al. and Stroeker and Tzanakis (1994). The Schoof-Elkies-Atkin algorithm can be used to determine the order of an elliptic curve E/F_p over the finite field F_p.


REFERENCES:

Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput. 61, 29-68, 1993.

Cassels, J. W. S. Lectures on Elliptic Curves. New York: Cambridge University Press, 1991.

Cremona, J. E. Algorithms for Modular Elliptic Curves, 2nd ed. Cambridge, England: Cambridge University Press, 1997.

Cremona, J. E. "Elliptic Curve Data." https://modular.fas.harvard.edu/cremona/INDEX.html.

Du Val, P. Elliptic Functions and Elliptic Curves. Cambridge, England: Cambridge University Press, 1973.

Fermigier, S. "Collection of Links on Research Articles on Elliptic Curves and Related Topics." https://www.fermigier.com/fermigier/elliptic.html.en.

Gebel, J.; Pethő, A.; and Zimmer, H. G. "Computing Integral Points on Elliptic Curves." Acta Arith. 68, 171-192, 1994.

Hartshorne, R. Algebraic Geometry. New York: Springer-Verlag, 1999.

Ireland, K. and Rosen, M. "Elliptic Curves." Ch. 18 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 297-318, 1990.

Joye, M. "Some Interesting References on Elliptic Curves." https://www.geocities.com/MarcJoye/biblio_ell.html.

Katz, N. M. and Mazur, B. Arithmetic Moduli of Elliptic Curves. Princeton, NJ: Princeton University Press, 1985.

Knapp, A. W. Elliptic Curves. Princeton, NJ: Princeton University Press, 1992.

Koblitz, N. Introduction to Elliptic Curves and Modular Forms. New York: Springer-Verlag, 1993.

Lang, S. Elliptic Curves: Diophantine Analysis. Berlin: Springer-Verlag, 1978.

Mazur, B. and Tate, J. "Points of Order 13 on Elliptic Curves." Invent. Math. 22, 41-49, 1973/74.

McKean, H. and Moll, V. Elliptic Curves: Function Theory, Geometry, Arithmetic. Cambridge, England: Cambridge University Press, 1999.

Riesel, H. "Elliptic Curves." Appendix 7 in Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 317-326, 1994.

Silverman, J. H. The Arithmetic of Elliptic Curves. New York: Springer-Verlag, 1986.

Silverman, J. H. The Arithmetic of Elliptic Curves II. New York: Springer-Verlag, 1994.

Silverman, J. H. and Tate, J. T. Rational Points on Elliptic Curves. New York: Springer-Verlag, 1992.

Stillwell, J. "Elliptic Curves." Amer. Math. Monthly 102, 831-837, 1995.

Stroeker, R. J. and Tzanakis, N. "Solving Elliptic Diophantine Equations by Estimating Linear Forms in Elliptic Logarithms." Acta Arith. 67, 177-196, 1994.

Swinnerton-Dyer, H. P. F. "Correction to: 'On 1-adic Representations and Congruences for Coefficients of Modular Forms.' " In Modular Functions of One Variable, Vol. 4, Proc. Internat. Summer School for Theoret. Phys., Univ. Antwerp, Antwerp, RUCA, July-Aug. 1972. Berlin: Springer-Verlag, 1975.

Weisstein, E. W. "Books about Elliptic Curves." https://www.ericweisstein.com/encyclopedias/books/EllipticCurves.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.