Read More
Date: 20-8-2020
849
Date: 24-10-2020
594
Date: 6-1-2020
1739
|
The negabinary representation of a number is its representation in base (i.e., base negative 2). It is therefore given by the coefficients in
(1) |
|||
(2) |
where .
Conversion of to negabinary can be done using the Wolfram Language code
Negabinary[n_Integer] := Module[
{t = (2/3)(4^Floor[Log[4, Abs[n] + 1] + 2] - 1)},
IntegerDigits[BitXor[n + t, t], 2]
]
due to D. Librik (Szudzik). The bitwise XOR portion is originally due to Schroeppel (1972), who noted that the sequence of bits in is given by .
The following table gives the negabinary representations for the first few integers (OEIS A039724).
negabinary | negabinary | ||
1 | 1 | 11 | 11111 |
2 | 110 | 12 | 11100 |
3 | 111 | 13 | 11101 |
4 | 100 | 14 | 10010 |
5 | 101 | 15 | 10011 |
6 | 11010 | 16 | 10000 |
7 | 11011 | 17 | 10001 |
8 | 11000 | 18 | 10110 |
9 | 11001 | 19 | 10111 |
10 | 11110 | 20 | 10100 |
If these numbers are interpreted as binary numbers and converted to decimal, their values are 1, 6, 7, 4, 5, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, ... (OEIS A005351). The numbers having the same representation in binary and negabinary are members of the Moser-de Bruijn sequence, 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, ... (OEIS A000695).
REFERENCES:
Gardner, M. Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, p. 101, 1986.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
Schroeppel, R. Item 128 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 24, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/flows.html#item128.
Sloane, N. J. A. Sequences A000695/M3259, A005351/M4059, and A039724 in "The On-Line Encyclopedia of Integer Sequences."
Szudzik, M. "Programming Challenge: A Mathematica Programming Contest." Wolfram Technology Conference, 1999.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|