المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

صورة الغش والتواطؤ في تنفيذ العقد
2023-02-15
تعريف التأمين
14-3-2016
سبب نشوء القواعد الفقهية وأنها لا تنحصر في عدد معيّن
31-8-2018
OUTPUT CHARACTERISTICS
18-4-2016
المضادات الحيوية Antibiotics
18-5-2017
مصادر الطاقة المتجددة
31-8-2019

Homotopies and the Fundamental Group-Simply-Connected Topological Spaces  
  
1457   11:11 صباحاً   date: 21-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 17-7-2021 1628
Date: 24-7-2021 1753
Date: 27-6-2021 1182

Definition : A topological space X is said to be simply-connected if it is path connected, and any continuous map f: ∂D → X mapping the boundary circle ∂D of a closed disc D into X can be extended continuously over the whole of the disk.

Example Rn is simply-connected for all n. Indeed any continuous map f: ∂D → Rn defined over the boundary ∂D of the closed unit disk D can be extended to a continuous map F: D → Rn over the whole disk by setting F(rx) = rf(x) for all x ∈ ∂D and r ∈ [0, 1].

let E be a topological space that is homeomorphic to the closed disk D,  and let ∂E = h(∂D), where ∂D is the boundary circle of the disk D and h: D → E is a homeomorphism from D to E. Then any continuous map g: ∂E→X mapping ∂E into a simply-connected space X extends continuously to the whole of E. Indeed there exists a continuous map F: D → X which extends g ◦ h: ∂D → X, and the map F ◦ h−1 : E → X then extends the map g.

Theorem 1.3 A path-connected topological space X is simply-connected if and only if π1(X, x) is trivial for all x ∈ X.

Proof Suppose that the space X is simply-connected. Let γ: [0, 1] → X be a loop based at some point x of X. Now the unit square is homeomorphic to the unit disk, and therefore any continuous map defined over the boundary of the square can be continuously extended over the whole of the square. It follows that there exists a continuous map F: [0, 1] × [0, 1] → X such that F(t, 0) = γ(t) and F(t, 1) = x for all t ∈ [0, 1], and F(0, τ ) = F(1, τ ) = x for all τ ∈ [0, 1]. Thus γ ≃ εx rel{0, 1}, where εx is the constant loop at x, and hence [γ] = [εx] in π1(X, x). This shows that π1(X, x) is trivial.

Conversely suppose that X is path-connected and π1(X, x) is trivial for all x ∈ X. Let f: ∂D → X be a continuous function defined on the boundary circle ∂D of the closed unit disk D in R2 . We must show that f can be extended continuously over the whole of D. Let x = f(1, 0). There exists a continuous map G: [0, 1]×[0, 1] → X such that                                               G(t, 0) = f(cos(2πt),sin(2πt))  and G(t, 1) = x for all t ∈ [0, 1] and G(0, τ ) = G(1, τ ) = x for all τ ∈ [0, 1],  since π1(X, x) is trivial. Moreover G(t1, τ1) = G(t2, τ2) whenever                                   q(t1, τ1) = q(t2, τ2), where

                        q(t, τ ) = ((1 − τ ) cos(2πt) + τ,(1 − τ ) sin(2πt))

for all t, τ ∈ [0, 1]. It follows that there is a well-defined function F: D → X such that F ◦ q = G. However q: [0, 1] × [0, 1] → D is a continuous surjection from a compact space to a Hausdorff space and is therefore an identification map. It follows that F:D → X is continuous (since a basic property of identification maps ensures that a function F: D → X is continuous if and only if F ◦ q: [0, 1] × [0, 1] → X is continuous). Moreover F: D → X extends the map f. We conclude that the space X is simply-connected, as required.

One can show that, if two points x1 and x2 in a topological space X can be joined by a path in X then π1(X, x1) and π1(X, x2) are isomorphic.

On combining this result with Theorem 1.3, we see that a path-connected topological space X is simply-connected if and only if π1(X, x) is trivial for some x ∈ X.

Theorem 1.4 Let X be a topological space, and let U and V be open subsets of X, with U ∪V = X. Suppose that U and V are simply-connected, and that U ∩ V is non-empty and path-connected. Then X is itself simply-connected.

Proof We must show that any continuous function f: ∂D → X defined on the unit circle ∂D can be extended continuously over the closed unit disk D.

Now the preimages f−1 (U) and f−1 (V ) of U and V are open in ∂D (sincef is continuous), and ∂D = f−1 (U) ∪ f−1 (V ). It follows from the Lebesgue Lemma that there exists some      δ > 0 such that any arc in ∂D whose length is less than δ is entirely contained in one or other of the sets f−1 (U) and f−1 (V ). Choose points z1, z2, . . . , zn around ∂D such that the distance from zi to zi+1 is less than δ for i = 1, 2, . . . , n−1 and the distance from zn to z1 is also less than δ. Then, for each i, the short arc joining zi−1 to zi is mapped by f into one or other of the open sets U and V .

Let x0 be some point of U ⋂V . Now the sets U, V and U ⋂V are all pathconnected. Therefore we can choose paths αi: [0, 1] → X for i = 1, 2, . . . , n such that αi(0) = x0, αi(1) = f(zi), αi([0, 1]) ⊂ U whenever f(zi) ∈ U, and αi([0, 1]) ⊂ V whenever f(zi) ∈ V . For convenience let α0 = αn Now, for each i, consider the sector Ti of the closed unit disk bounded by the line segments joining the centre of the disk to the points zi−1 and zi and by the short arc joining zi−1 to zi . Now this sector is homeomorphic to the closed unit disk, and therefore any continuous function mapping the boundary ∂Ti of Ti into a simply-connected space can be extended continuously over the whole of Ti . In particular, let Fi be the function on ∂Ti defined by

Note that Fi(∂Ti) ⊂ U whenever the short arc joining zi1 to zi is mapped by f into U, and Fi(∂Ti) ⊂ V whenever this short arc is mapped into V . But U and V are both simply-connected. It follows that each of the functions Fi can be extended continuously over the whole of the sector Ti . Moreover the functions defined in this fashion on each of the sectors Ti agree with one another wherever the sectors intersect, and can therefore be pieced together to yield a continuous map defined over the the whole of the closed disk D which extends the map f, as required.

Example The n-dimensional sphere Sn is simply-connected for all n > 1,  where S n = {x ∈ Rn+1 : |x| = 1}. Indeed let U = {x ∈ Sn: xn+1 > −1/2} and V = {x ∈ Sn: xn+1 <1/2}. Then U and V are homeomorphic to an n-dimensional ball, and are therefore simply-connected. Moreover U ∩ V is path-connected, provided that n > 1. It follows that Sn is simply-connected for all n > 1.

 

 

 

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.