المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

ماذا يحدث إذا امتص الجزيء الضوء
2024-02-12
انتاج الخيار تحت الانفاق البلاستيكية
21-6-2017
عمر الاسماك وطرق تقدير عمر الاسماك
11-2-2016
مشاكل الضبط البؤري باستخدام الأشعة تحت الحمراء
13-12-2021
النية في الصلاة
29-11-2016
التعامل مع الاخر
26-10-2017

Ivan Vladislavovich Sleszynski  
  
25   01:55 مساءً   date: 26-2-2017
Author : S McCall
Book or Source : Polish Logic, 1920-1939: Papers by Ajdukiewicz Andothers
Page and Part : ...


Read More
Date: 26-2-2017 100
Date: 22-2-2017 74
Date: 26-2-2017 26

Born: 23 July 1854 in Lysianka, Cherkasy, Kiev gubernia, Ukraine

Died: 9 March 1931 in Kraków, Poland


Ivan Sleszynski's first name is sometimes written as 'Jan', which is the Polish version, while his last name is either given by the Polish 'Sleszynski' or the Russian versions 'Sleshinskii' or 'Sleshinsky'. Although Ivan was born in the Ukraine, he was ethnically Polish, being born into a Polish family living in Lysianka, a town about 160 km due south of Kiev. He studied mathematics at Odessa University and graduated from there in 1875. He then travelled to Germany where he studied under Karl Weierstrass at the University of Berlin, receiving his doctorate in 1882. Returning to Odessa, he became professor of mathematics at the University, holding the position from 1883 to 1909. The year 1909 was significant in another way, for it was the one in which he published his translation of Louis Couturat's famous book The algebra of logic. This work by Sleszynski was more than a translation since it contained Sleszynski's own very useful commentary. This text had a major influence on the development of mathematical logic in Russia since it became the main textbook used by students of the subject over many years.

Sleszynski left Odessa and went to Poland in 1911 where he was appointed as an extraordinary professor at the Jagellonian University of Krakow. We should note that in fact Krakow was at this time in the Austro-Hungarian Empire but, remembering Sleszynski's Polish background, it is fair to say that he was moving to Poland. In 1919 he was promoted from extraordinary professor to become the full Professor of Logic and Mathematics the Jagellonian University. He continued to teach at Krakow until, having reached the age of seventy, he retired in 1924. In fact we note that the university decided not to fill his chair after he retired.

Sleszynski's main work was on continued fractions, least squares and axiomatic proof theory based on mathematical logic. In a paper of 1892, based on his doctoral dissertation, he examined Cauchy's version of the Central Limit Theorem using characteristic function methods, and made several significant improvements and corrections. Because of the work, he is recognised as giving the first rigorous proof of a restricted form of the Central Limit Theorem.

In 1898 Alfred Pringsheim proved that the condition

bn | ≥ | an | + 1, an ≠ 0, n ≥ 1,

ensures the convergence of the continued fraction K(an / bn), where an and bn are complex numbers; a result now known as the Pringsheim criterion. W J Thron states in [6] that this result was established ten years earlier by Sleszynski. Thron demonstrates that Pringsheim was aware of Sleszynski's work, though Pringsheim himself claims that he only became aware of Sleszynski after his article was completed. Six papers by Sleszynski on continued fractions are discussed in [6] where a complete bibliography of Sleszynski's mathematical papers is given. His work on continued fractions is also discussed in [4].

In [2] Bednarowski discusses Sleszynski's book O Logice Tradycyjnej (On traditional logic) published in Krakow in 1921:-

Sleszynski assumes that the part of traditional logic created by Aristotle is a theory of relations which may hold between two classes. He then askes the following question. Having two non-empty classes A and B, what are the possible relations between them so far as having elements in common is concerned? His answer is that between A and B there holds one and only one of five relations which he symbolises by a, b, g, d, e.

Sleszynski then represents the five different situations by using Venn diagrams. In a the two classes A and B coincide, in b the class A is properly contained in B, in g the class B is properly contained in A, in d the classes A - BB - A, and A intersect B are all non-empty, and in the final case eA and B are disjoint. Sleszynski then argues as follows. First he says that either A and B have common elements or they do not. If they do not then we have the situation e. Next Sleszynski looks at the situation where common elements exist. Either one of A or B contains an element not in the other, or they do not. If they do not, then we have the situation a. There remains the case where either one of A or B contains an element not in the other. If A fails to contain an element not in B we have b. Otherwise A contains an element not in B. If also A contains an element not in B then d otherwise g. Sleszynski also goes on to consider what happens when empty classes are allowed and shows that three further relations occur.

We should mention another interesting work by Sleszynski, namely On the significance of logic for mathematics (Polish) published in 1923. However, despite the interesting publications we have mentioned, Sleszynski did not publish much of his work. This was rectified by a major two-volume publication in the years following his retirement. One of Sleszynski's most famous students at the Jagellonian University of Krakow was Stanislaw Zaremba. In 1925 Zaremba, acting as editor, published the first of two volumes of The theory of proof based on Sleszynski's lectures at Krakow. A second volume appeared in 1929. McCall writes in [1]:-

Much indeed can be learned from the rich collection of [Sleszynski's] papers on various subjects in the realm of formal logic, and of mathematical logic and its history ... Introduction to mathematical logic, complete proof, mathematical proof, exposition of the theory of propositions, the Boolean calculus, Grassmann's logic, Schröder's algebra, Poretsky's seven laws, Peano's doctrine, Burali-Forti's doctrine - these are some of the themes pursued in this work, from which I personally have learned a great deal and thanks to which I have got a clear idea of many an unclear thing.

We end this brief biography by giving the following quote by Sleszynski:-

The point of civilization is the exchange of ideas. And where is this exchange, if everybody writes and nobody reads?


 

Books:

  1. S McCall, Polish Logic, 1920-1939: Papers by Ajdukiewicz Andothers (Oxford University Press US, 1967).

Articles:

  1. W Bednarowski, Hamilton's Quantification of the Predicate, Proc. Aristotelian Soc. 56 (1955-1956), 217-240.
  2. J J Jadacki, Jan Sleszy'nski (Polish), Wiadom. Mat. 34 (1998), 83-97.
  3. S N Kiro, I V Slesinskii's papers in the theory of continued fractions (Russian) in Continued fractions and their applications 106, Inst. Mat., Akad. Nauk Ukrain. SSR (Kiev, 1976), 61-62.
  4. E Seneta, Jan Sleszy'nski as a probabilist (Polish), Wiadom. Mat. 34 (1998), 99-104.
  5. W J Thron, Should the Pringsheim criterion be renamed the Sleszynski criterion?, Comm. Anal. Theory Contin. Fractions 1 (1992), 13-20.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.