المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
اخذ المشركون لمال المسلم
2024-11-24
حكم الغنائم في البلاد المفتوحة
2024-11-24
احكام الاسارى
2024-11-24
الخرشوف Artichoke (من الزراعة الى الحصاد)
2024-11-24
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24

التعريف التشريعي للراتب
2023-08-22
تصنيع الخبز
26-7-2016
إجراءات التصنيع
3-10-2016
تفكك السليلوز Cellulose Degradation
17-10-2017
ادلة التطور Evidences for Evolution
28-7-2021
في ما يعمل لردّ الضالّة والمسروق والآبق والغائب
22-04-2015

Thomas Fuller  
  
836   02:16 مساءاً   date: 29-6-2016
Author : Biography in Encyclopaedia Britannica
Book or Source : Biography in Encyclopaedia Britannica
Page and Part : ....


Read More
Date: 31-3-2016 845
Date: 22-3-2016 1535
Date: 29-3-2016 921

Born: 1710 in West Africa
Died: 1790 in Alexandria, Virginia, USA

 

Little is known of Thomas Fuller. Fauvel and Paulus [1] write:-

Thomas Fuller was an African, shipped to America as a slave in 1724. He had remarkable powers of calculation, and late in his life was discovered by antislavery campaigners who used him as a demonstration that blacks are not mentally inferior to whites.

The place of his birth appears to have been between present day Liberia and Benin. Known as Negro Tom, we know that he was described as a very black man and also we know that he lived in Virginia after being brought to the United States as a slave. Certainly late in his life he was the property of Elixabeth Coxe of Alexandria. Scripture writes in [4]:-

Thomas Fuller, known as the Virginia Calculator, was stolen from his native Africa at the age of fourteen and sold to a planter. When he was about seventy years old, two gentlemen, natives of Pennsylvania, viz., William Hartshorne and Samuel Coates, men of probity and respectable characters, having heard, in travelling through the neighbourhood in which the slave lived, of his extraordinary powers in arithmetic, sent for him and had their curiosity sufficiently gratified by the answers which he gave to the following questions: First, Upon being asked how many seconds there were in a year and a half, he answered in about two minutes, 47 304 000. Second: On being asked how many seconds a man has lived who is 70 years, 17 days and 12 hours old, he answered in a minute and a half 2 210 500 800. One of the gentlemen who employed himself with his pen in making these calculations told him he was wrong, and the sum was not so great as he had said - upon which the old man hastily replied: stop, master, you forget the leap year. On adding the amount of the seconds of the leap years the amount of the whole in both their sums agreed exactly.

Another question was asked and satisfactorily answered. Before two other gentlemen he gave the amount of nine figures multiplied by nine. ... In 1790 he died at the age of 80 years, having never learned to read or write, in spite of his extraordinary power of calculation.

Present day thinking is that Fuller learnt to calculate in Africa before he was brought to the United States as a slave. Supporting evidence for this comes from a passage written by Thomas Clarkson in 1788 describing the purchase of African slaves:-

It is astonishing with what facility the African brokers reckon up the exchange of European goods for slaves. One of these brokers has ten slaves to sell , and for each of these he demands ten different articles. He reduces them immediately by the head to bars, coppers, ounces... and immediately strikes the balance. The European, on the other hand, takes his pen, and with great deliberation, and with all the advantage of arithmetic and letters, begin to estimate also. He is so unfortunate, as to make a mistake: but he no sooner errs, than he is detected by this man of inferior capacity, whom he can neither deceive in the name or quality of his goods, nor in the balance of his account.

Despite Fuller's calculating abilities he was never taught to read or write and again this is evidence that he did not learn to calculate while in the United States. When someone who had witnessed his calculating abilities remarked that it was a pity he had not been educated, Fuller replied (see [3]):-

It is best I got no learning; for many learned men be great fools.


 

  1. Biography in Encyclopaedia Britannica.

Articles:

  1. J Fauvel and P Paulus, African slave and calculating prodigy: bicentenary of the death of Thomas Fuller, Historia Math. 17 (2) (1990), 141-151.
  2. F D Mitchell, Mathematical prodigies, American Journal of Psychology 18 (1907), 62.
  3. W F Mugleston, Thomas Fuller, American National Biography 8 (Oxford, 1999), 566.
  4. E W Scripture, Arithmetical prodigies, American Journal of Psychology 6 (1891), 1-59.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.