المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

علاج العجب‏
6-10-2016
السهو في الصلاة الذي لا يلتفت اليه
9-10-2018
الأنواع الرئيسية للنقل - النقل المائي
17-7-2021
التخطيط السياحي
4/11/2022
المثل العليا
3-06-2015
نافلة شهر رمضان
14-1-2020

Nicolas Vilant  
  
845   03:11 مساءاً   date: 31-3-2016
Author : A D D Craik
Book or Source : A forgotten British analyst: Nicolas Vilant (1737-1807)
Page and Part : ...


Read More
Date: 21-3-2016 996
Date: 23-3-2016 2005
Date: 29-6-2016 1037

 

Born: 12 June 1737 in Ferryport-on-Tay, now Tayport, Scotland
Died: 25 May 1807 in St Andrews, Scotland


Nicolas Vilant was Regius Professor of Mathematics at St Andrews University in Scotland during 1765-1807. Plagued by ill-health, he was unable to teach for much of this time, and employed a series of assistants. Well-versed in the British analytical tradition, he was, like his contemporaries, largely unaware of developments in the rest of Europe. However, he was a mathematician of some skill, and his textbook The Elements of Mathematical Analysis, abridged, for the use of students is of considerable interest. Though unable to complete for publication a more comprehensive work, many manuscripts survive in St Andrews University Library. The only known likeness of Nicolas Vilant is a small drawing by his colleague Professor John Cook, who often avoided the difficulty of faces by drawing rear views - perhaps appropriately in Vilant's case.

The Vilant family, originally from France, had long associations with St Andrews University and with the surrounding neighbourhood, where several members held academic and church positions. Nicolas Vilant's parents were William Vilant, the minister at Ferryport-on-Tay (now Tayport) and his second wife Jean Wilson. The date we have given above as his date of birth, is actually the date on which he was baptised. He first matriculated at St Andrews in 1752, studying mathematics under David (II) Gregory. He graduated M.A. in 1756 and worked for a time as a mathematical teacher at Watts' Academy in London. He returned to St Andrews to succeed David Gregory in 1765, the same year that John Playfair graduated M.A. He held the mathematics chair until his death, but for much of the time he was unable to teach owing to severe rheumatic pains, probably rheumatoid arthritis, that set in when he was in his mid-thirties. As a private arrangement, he employed a series of assistants to teach in his stead; but he gave occasional lectures, supervised the work of his assistants and took an interest in the best students. Among his assistants were the former St Andrews students James Glenie, John West, James Brown, Thomas Duncan and Thomas Chalmers; and other students of this time include James Ivory, John Leslie and Adam Anderson. Though Vilant's colleagues complained of his inability to perform his duties, the historian David Masson [Masson, 1911; 45] later drew attention to "a tradition of unusual mathematical excellence and ardour" dating from the time that "the nominal incumbent of the mathematical chair, Professor Vilant, finding himself disqualified by ill-health, had committed the duties ... to well-chosen assistants." Indeed, it is reasonable to claim that a considerable portion of the mathematical and physical activity in late eighteenth-century and early nineteenth-century Britain emanated, at least indirectly, from St Andrews.

Vilant's The Elements of Mathematical Analysis, abridged. For the Use of Students is perhaps the first book in English to use the phrase "Mathematical Analysis" in its title. A large part was first printed in 1777 and then used as a textbook from 1783. The Preface begins:-

In this small Treatise on Mathematical Analysis, the most general Propositions only are given; and in Notes at the bottom of the pages, are pointed out the principal authors to be consulted by students. The whole up to page 129, was printed in 1777; but owing to the Author's bad health, etc it was not until 1783, that the same with the addition of the quarter sheet from page 129 to page 133 was used here as a Text Book.

But most extant copies of the book were published in 1798 with additional Notes and a separately-paginated 28-page Synopsis of Book V. of Euclid's Elements (printed in St Andrews in 1797). Though much briefer than other contemporary texts, it nevertheless covers a great deal of ground; but it often lacks clarity and is written in an already old-fashioned style. Those parts for which some originality may be claimed are: (a) a method for finding the cube root of binomials of form R ± √S, where S may be positive or negative, and (b) a method for finding rational and whole-number solutions of indeterminate problems involving linear, quadratic and cubic equations.

Vilant states in his preface that he "proposes hereafter to publish a complete System of the Elements of Mathematical Analysis demonstrated", but this would have to wait until "his health will allow him to arrange properly what he hath prepared on this subject." His health did not allow this, but thirteen volumes of manuscripts on this theme, and some other subjects, are preserved in St Andrews University Library.

Vilant was an able synthesiser and summariser; perhaps the last analyst steeped in the British tradition that followed Isaac Newton, but largely ignorant of important developments elsewhere in Europe.

Around 1770 he married Elizabeth Brand; two of their sons later matriculated at the University of St Andrews.

The picture of Vilant is from Cook Drawings [c.1797]. Rear view of Nicolas Vilant, drawn by Professor John Cook. Cook-25-3, St Andrews University Library Special Collections.


 

Articles:

  1. A D D Craik and A Roberts, Mathematics teaching and teachers at St Andrews University, 1765-1858, in History of Universities 24 (Oxford University Press, Oxford, 2009), 206-279.
  2. A D D Craik, A forgotten British analyst: Nicolas Vilant (1737-1807). In preparation.
  3. D M Masson, Memories of two Cities, Edinburgh and Aberdeen, in F Masson (ed.), Macmillan's Magazine (Oliphant, Anderson & Co., Edinburgh and London, 1864-65).
  4. N Vilant, The Elements of Mathematical Analysis, abridged, For the Use of Students. Edinburgh, n.d. [1783]. Enlarged in 1798 with additional Notes and 28-page Synopsis of Book V. of Euclid's Elements. Printed for Bell & Bradfute, Edinburgh, and F Wingrave, London (1783/1798).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.