Read More
Date: 25-6-2017
![]()
Date: 24-6-2017
![]()
Date: 11-7-2021
![]() |
The Alexander invariant of a knot
is the homology of the infinite cyclic cover of the complement of
, considered as a module over
, the ring of integral laurent polynomials. The Alexander invariant for a classical tame knot is finitely presentable, and only
is significant.
For any knot in
whose complement has the homotopy type of a finite CW-complex, the Alexander invariant is finitely generated and therefore finitely presentable. Because the Alexander invariant of a tame knot in
has a square presentation matrix, its Alexander ideal is principal and it has an Alexander polynomial denoted
.
REFERENCES:
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 206-207, 1976.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|