المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05

الكنية من الادب
11-9-2016
Other Microminerals
19-12-2021
نمو ثمار الباذنجان
20/12/2022
امتداد الخصومة في دعوى الشفعة
2024-06-29
حلمة الشليك أو الحلمة الحمراء التركستانية Strawberry Mite
10-7-2021
من المادة إلى الحياة
29-3-2018

Difference of Successes  
  
1267   04:28 مساءً   date: 4-4-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 24-3-2021 1703
Date: 27-4-2021 1162
Date: 14-3-2021 2336

Difference of Successes

If x_1/n_1 and x_2/n_2 are the observed proportions from standard normally distributed samples with proportion of success theta, then the probability that

 w=(x_1)/(n_1)-(x_2)/(n_2)

(1)

will be as great as observed is

 P_delta=1-2int_0^(|delta|)phi(t)dt,

(2)

where

delta = w/(sigma_w)

(3)

sigma_w = sqrt(theta^^(1-theta^^)(1/(n_1)+1/(n_2)))

(4)

theta^^ = (x_1+x_2)/(n_1+n_2).

(5)

Here, theta^^ is the unbiased estimator. The skewness and kurtosis excess of this distribution are

gamma_1^2 = ((n_1-n_2)^2)/(n_1n_2(n_1+n_2))(1-4theta^^(1-theta^^))/(theta^^(1-theta^^))

(6)

gamma_2 = (n_1^2-n_1n_2+n_2^2)/(n_1n_2(n_1+n_2))(1-6theta^^(1-theta^^))/(theta^^(1-theta^^)).



الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.