Read More
Date: 29-3-2020
748
Date: 17-1-2021
692
Date: 8-5-2020
1447
|
Consider the Euclid numbers defined by
where is the th prime and is the primorial. The first few values of are 3, 7, 31, 211, 2311, 30031, 510511, ... (OEIS A006862).
Now let be the next prime (i.e., the smallest prime greater than ),
where is the prime counting function. The first few values of are 5, 11, 37, 223, 2333, 30047, 510529, ... (OEIS A035345).
Then R. F. Fortune conjectured that is prime for all . The first values of are 3, 5, 7, 13, 23, 17, 19, 23, ... (OEIS A005235), and values of up to are indeed prime (Guy 1994), a result extended to 1000 by E. W. Weisstein (Nov. 17, 2003). The indices of these primes are 2, 3, 4, 6, 9, 7, 8, 9, 12, 18, .... In numerical order with duplicates removed, the Fortunate primes are 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, ... (OEIS A046066).
REFERENCES:
Banderier, C. "Fortunate and Unfortunate Primes: Nearest Primes from a Prime Factorial." Dec. 18, 2000. https://algo.inria.fr/banderier/Computations/prime_factorial.html.
Gardner, M. "Patterns in Primes are a Clue to the Strong Law of Small Numbers." Sci. Amer. 243, 18-28, Dec. 1980.
Golomb, S. W. "The Evidence for Fortune's Conjecture." Math. Mag. 54, 209-210, 1981.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 7, 1994.
Sloane, N. J. A. Sequences A006862/M2698, A005235/M2418, A035345, and A046066 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|