المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الطبقة المتاخمة boundary layer
12-2-2018
الدورة الزراعية المناسبة لفول الصويا
15-11-2019
علي بن عبد الغني القَرَوي الحُصَري الأندلسي
28-06-2015
معنى كلمة أيّوب‌
31-1-2016
خميرة الخبز الجافة Active Dry Yeast
9-4-2017
الإزالة بالقشط Scrape Discharge
6-1-2020

Euler,s Totient Theorem  
  
626   06:00 مساءً   date: 27-8-2020
Author : Shanks, D
Book or Source : Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea
Page and Part : ...


Read More
Date: 10-9-2020 470
Date: 18-7-2020 2016
Date: 23-10-2019 1709

Euler's Totient Theorem

A generalization of Fermat's little theorem. Euler published a proof of the following more general theorem in 1736. Let phi(n) denote the totient function. Then

 a^(phi(n))=1 (mod n)

for all a relatively prime to n.


REFERENCES:

Séroul, R. "The Theorems of Fermat and Euler." §2.8 in Programming for Mathematicians. Berlin: Springer-Verlag, p. 15, 2000.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 21 and 23-25, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.