Read More
Date: 30-7-2020
722
Date: 17-12-2020
906
Date: 16-1-2021
1403
|
The cototient of a positive number is defined as , where is the totient function. It is therefore the number of positive integers that have at least one prime factor in common with .
The first few cototients for , 2, ... are 0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, ... (OEIS A051953).
REFERENCES:
Browkin, J. and Schinzel, A. "On Integers Not of the Form ." Colloq. Math. 68, 55-58, 1995.
Erdős, P. "Über die Zahlen der Form und ." Elem. Math. 11, 83-86, 1973.
Flammenkamp, A. and Luca, F. "Infinite Families of Noncototients." Colloq. Math. 86, 37-41, 2000.
Jamison, R. E. "The Helly Bound for Singular Sums." Disc. Math. 249, 117-133, 2002.
Sloane, N. J. A. Sequence A051953 in "The On-Line Encyclopedia of Integer Sequences."
Pomerance, C. and Yang, H.-S. "Variant of a Theorem of Erdős on the Sum-Of-Proper-Divisors Function." Math. Comput. 83, 1903-1913, 2014.
|
|
مخاطر عدم علاج ارتفاع ضغط الدم
|
|
|
|
|
اختراق جديد في علاج سرطان البروستات العدواني
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|