المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الأطعمة التي تورث الذكاء
2025-03-31
تأثير الإسراف في الطعام والشراب على الجسد
2025-03-31
اعرف مدى خطورة الضغوط النفسية على سلامة مخك
2025-03-31
اختر الأطعمة الغنية بحمض الفوليك
2025-03-31
Bilingual learners
2025-03-31
Cultural issues and schools Conclusion
2025-03-31

تحليل السكري
30-1-2017
مناقب الإِمام الحسن (عليه السلام)
6-03-2015
فروع علم الأجرام
17-6-2022
بديهة ابن ظافر
12/12/2022
تروك الصوم (المفطرات)
2025-01-18
Carmichael,s Totient Function Conjecture
30-7-2020

Fundamental Theorem of Genera  
  
749   05:17 مساءً   date: 31-12-2019
Author : Cohn, H
Book or Source : Advanced Number Theory. New York: Dover, 1980
Page and Part : ...


Read More
Date: 21-9-2020 1093
Date: 27-12-2020 1110
Date: 22-12-2019 922

Fundamental Theorem of Genera

Consider h_+(d) proper equivalence classes of forms with discriminant d equal to the field discriminant, then they can be subdivided equally into 2^(r-1) genera of h_+(d)/2^(r-1) forms which form a subgroup of the proper equivalence class group under composition (Cohn 1980, p. 224), where r is the number of distinct prime divisors of d. This theorem was proved by Gauss in 1801.


REFERENCES:

Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary Quadratic Fields with Small Odd Class Number." http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.

Cohn, H. Advanced Number Theory. New York: Dover, 1980.

Gauss, C. F. Disquisitiones Arithmeticae. New Haven, CT: Yale University Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.