المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

حكم المستطيع القادر على الحج متسكعا
15-8-2017
Maps and Planarity
12-2-2016
[فعلة خالد بن المعمر ومحاولة كسر الميسرة]
18-10-2015
Activation of Halogenation of Benzene
26-8-2019
صريمة الجدي الدغلية Lonicera xylosteum
1-9-2019
خـطوات التسعـيـر
3-4-2019

oronto Function  
  
1249   05:40 مساءً   date: 10-6-2019
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 19-9-2019 1671
Date: 9-9-2019 1807
Date: 21-8-2018 1317

oronto Function

The function defined by

 T(m,n,r)=r^(2n-m+1)e^(-r^2)(Gamma(1/2m+1/2))/(n!)_1F_1(1/2(m+1);n+1;r^2)

(1)

(Heatley 1943; Abramowitz and Stegun 1972, p. 509), where _1F_1(a;b;z) is a confluent hypergeometric function of the first kind and Gamma(z) is the gamma function.

Heatley originally defined the function in terms of the integral

 T(m,n,p,a)=int_0^inftyt^(-n)e^(-p^2t^2)I_n(2at)dt,

(2)

where I_n(x) is a modified Bessel function of the first kind, which is similar to an integral of Watson (1966, p. 394), with Watson's J_nu(at) changed to I_n(2at) and a few other minor changes of variables. In terms of this function,

 T(m,n,r)=2r^(n-m+1)e^(-r^2)T(m,n,1,r)

(3)

(Heatley 1943). Heatley (1943) also gives a number of recurrences and other identities satisfied by T(m,n,r).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 509, 1972.

Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, p. 268, 1981.

Heatley, A. H. "A Short Table of the Toronto Function." Trans. Roy. Soc. Canada 37, 13-29, 1943.

Slater, L. J. Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press, p. 99, 1960.

Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.