المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Exponential Functions  
  
2137   02:12 مساءً   date: 4-3-2017
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 11-3-2019 999
Date: 23-1-2019 781
Date: 4-3-2019 797

What is an exponential function?

An exponential function is a mathematical expression in which a variable represents the exponent of an expression.

What does an exponential function look like?

Here's a very simple exponential function:

That equation is read as "y equals 2 to the x power."

Exponent refresher:

Let's remember how exponents work. Suppose we have the equation below:

That equation tells us to multiply x by itself to get y. It's the equivalent of:

If we want to find y when x=3, we can pretty quickly find that y=3*3=9. But, this is actually what's known as a "power function". In fact, it's just a polynomial, and not an exponential function at all.

Take a closer look at x2 . This means x squared or x to the second power. What does it mean? There are two parts to this exponential term:

1) An exponent, which is the number 2.
2) A base, which is the variable x.

With exponential functions, the variable will actually be the exponent, with a constant as the base.

Exponential Functions

Here's what exponential functions look like:

The equation is y equals 2 raised to the x power. This sort of equation represents what we call "exponential growth" or "exponential decay." Other examples of exponential functions include:

The general exponential function looks like this: http://www.freemathhelp.com/images/lessons/expon5.gif, where the base b is any positive constant. The base b could be 1, but remember that 1 to any power is just 1, so it's a particularly boring exponential function!

Let's try some examples:

Example 1

Solve for x: 

This one is actually pretty simple, so let's just think it through:

The problem says we have to multiply x number of two's together to get four. Well, everyone knows that 2*2=4, so the answer is two:

Ok, great, that was an easy example. But you can see where this could get really, hard, right? Look at this:

Example 2

Solve for y when x=5.

That means we need to plug-in x=5 and see what we get:

Fortunately all we had to do with this problem was multiply 1.2 times itself a few times to get the answer.

What about a word problem example?

We can use a formula for exponential growth to model the population of a bacteria. Let's say the bacteria population is defined by  where B is the total population and t represents time in hours. While that may look complicated, it really tells us that the bacteria grows by 12 percent every hour. Every time another hour goes by, t goes up by 1, so we have to multiply the population times 1.12 again. The 100 simply sets the initial population at time t=0.

So, how much bacteria remains after 4 hours?

What do we know? We have the formula  and the fact that t=4.

Replace t with 4 hours in the formula above and simplify.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.