المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

نظير جمعي للمصفوفة Negative of Matrix
27-12-2015
مفهوم النقل العالمي
9-9-2021
معنى النصر العزيز.
16-4-2022
Lactoferroxins
6-11-2018
الوجود لا ضدّ و لا مثل له
1-07-2015
نسب النبي (صلى الله عليه وآله)
1-12-2016

François Joseph Servois  
  
114   09:04 صباحاً   date: 7-7-2016
Author : R Taton
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 8-7-2016 36
Date: 8-7-2016 36
Date: 8-7-2016 98

Born: 19 July 1768 in Mont-de-Laval (N of Morteau), Doubs, France
Died: 17 April 1847 in Mont-de-Laval, Doubs, France

 

François-Joseph Servois's father, Jacques-Ignance Servois, was a merchant and his mother was Jeanne-Marie Jolliet. Servois's first intention was to join the priesthood and he began by following this aim and was ordained at Besançon. However, this was in the early days of the French Revolution and a time of great political and military activity in France. Servois soon changed his mind about following a career in the Church, and left in 1793 to join the army.

He was at the artillery school in Châlons-sur-Marne in 1794 and immediately after this he was promoted to lieutenant. There were numerous military campaigns by the French army shortly after this and Servois was in the thick of the action serving as a staff officer. However, he had a great love of mathematics and while on the military campaigns Servois spent all his free time studying.

Legendre realised that Servois had considerable mathematical talents and he supported a move to have him appointed to the artillery school of Besançon as professor of mathematics. Appointed to this post in July 1801, Servois went on to hold similar positions over the next few years. His first move was only a few months after his first appointment at Besançon when he moved to the artillery school in Châlons-sur-Marne where he had begun his military career. Then in 1802 he made his second move, this time to the artillery school in Metz.

In comparison with his earlier appointments, Servois spent quite a while in Metz at the artillery school, remaining there until 1808. His next move was to the artillery school La Fère where he remained until 1816 when he moved to the artillery and engineering school at Metz. Hardly had he arrived in Metz when a position as curator of the artillery museum in Paris fell vacant. Servois was appointed as curator in 1816 and he held this post until he retired in 1827. After he retired Servois returned to his home town of Mont-de-Laval where he lived for nearly twenty further years.

Servois worked in projective geometry, functional equations and complex numbers. He introduced the word pole in projective geometry. He also came close to discovering the quaternions before Hamilton.

Petrova, in [5], describes a paper by Servois on differential operators written in the Annales de mathématiques in November 1814. Servois introduced the terms "commutative" and "distributive" in this paper describing properties of operators, and he also gave some examples of noncommutativity. Although he does not use the concept of a ring explicitly, he does verify that linear commutative operators satisfy the ring axioms. In doing so he showed why operators could be manipulated like algebraic magnitudes. This work initiates the algebraic theory of operators.

Servois was critical of Argand's geometric interpretation of the complex numbers. He wrote to Gergonne telling him so in November 1813 and Gergonne published the letter in the Annales de mathématiques in January 1814. Servois wrote:-

I confess that I do not yet see in this notation anything but a geometric mask applied to analytic forms the direct use of which seems to me simple and more expeditious.

Considered as a leading expert by many mathematicians of his day, he was consulted on many occasions by Poncelet while he was writing his book on projective geometry Traité des propriétés projective.


 

  1. R Taton, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903977.html

Articles:

  1. J Boyer, Le mathématicien franc-comtois François Joseph Servois, Mémoires de la Société d'émulation du Doubs 9 (1894),305-328.
  2. L A Ljusternik and S S Petrova, From the history of symbolic calculus (Russian), Istor.-Mat. Issled. Vyp. 22 (1977), 85-101; 302.
  3. L A Ljusternik and S S Petrova, Les premières étapes du calcul symbolique, Rev. Histoire Sci. Appl. 25 (3) (1972), 201-206.
  4. S S Petrova, The origin of linear operator theory in the works of Servois and Murphy (Russian), in History and methodology of the natural sciences XX (Moscow, 1978), 122-128.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.