المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
النظام الإقليمي العربي
2024-11-06
تربية الماشية في جمهورية كوريا الشعبية الديمقراطية
2024-11-06
تقييم الموارد المائية في الوطن العربي
2024-11-06
تقسيم الامطار في الوطن العربي
2024-11-06
تربية الماشية في الهند
2024-11-06
النضج السياسي في الوطن العربي
2024-11-06


Bonaventura Francesco Cavalieri  
  
1309   01:54 صباحاً   date: 26-10-2015
Author : A Favaro
Book or Source : Bonaventura Cavalieri nello studio di Bologna
Page and Part : ...


Read More
Date: 15-1-2016 801
Date: 26-10-2015 2340
Date: 13-1-2016 1371

Born: 1598 in Milan, Duchy of Milan, Habsburg Empire (now Italy)
Died: 30 November 1647 in Bologna, Papal States (now Italy)

 

Bonaventura Cavalieri joined the religious order Jesuati in Milan in 1615 while he was still a boy. In 1616 he transferred to the Jesuati monastery in Pisa. His interest in mathematics was stimulated by Euclid's works and after meeting Galileo, considered himself a disciple of the astronomer. The meeting with Galileo was set up by Cardinal Federico Borromeo who saw clearly the genius in Cavalieri while he was at the monastery in Milan.

In Pisa, Cavalieri was taught mathematics by Benedetto Castelli, a lecturer in mathematics at the University of Pisa. He taught Cavalieri geometry and he showed such promise that Cavalieri sometimes took over Castelli's lectures at the university.

Cavalieri applied for the chair of mathematics in Bologna in 1619 but was not successful since he was considered too young for a position of this seniority. He also failed to get the chair of mathematics at Pisa when Castelli left for Rome.

In 1621 Cavalieri became a deacon and assistant to Cardinal Federico Borromeo at the monastery in Milan. He taught theology there until 1623 when he became prior of St Peter's at Lodi. After three years at Lodi he went to the Jesuati monastery in Parma, where he was to spend another three years.

In 1629 Cavalieri was appointed to the chair of mathematics at Bologna but by this time he had already developed a method of indivisibles which became a factor in the development of the integral calculus.

Cavalieri's theory of indivisibles, presented in his Geometria indivisibilibus continuorum nova quadam ratione promota of 1635 was a development of Archimedes' method of exhaustion incorporating Kepler's theory of infinitesimally small geometric quantities. This theory allowed Cavalieri to find simply and rapidly the area and volume of various geometric figures.

The method of indivisibles was not put on a rigorous basis and his book was widely attacked. In reply Cavalieri improved his exposition publishing Exercitationes geometricae sex which became the main source for 17th Century mathematicians.

Cavalieri was also largely responsible for introducing logarithms as a computational tool in Italy through his book Directorium Generale Uranometricum. The tables of logarithms which he published included logarithms of trigonometric functions for use by astronomers.

Cavalieri also wrote on conic sections, trigonometry, optics, astronomy, and astrology. He developed a general rule for the focal length of lenses and described a reflecting telescope. He also worked on a number of problems of motion. He even published a number of books on astrology, one in 1639 and another, his last work, Trattato della ruota planetaria perpetua in 1646.

Cavalieri corresponded with many mathematicians including Galileo, Mersenne, Renieri, Rocca, Torricelli and Viviani. His correspondence with Galileo includes at least 112 letters. Galileo thought highly of him writing

few, if any, since Archimedes, have delved as far and as deep into the science of geometry.

Perhaps Cavalieri's most famous student was Stefano degli Angeli. He studied with Cavalieri at Bologna at a time when Cavalieri was quite old and suffering from arthritis. Angeli wrote many of the letters which Cavalieri sent to his fellow mathematicians during his time of study.


 

  1. E Carruccio, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900824.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9021898/Bonaventura-Cavalieri

Books:

  1. A Favaro, Bonaventura Cavalieri nello studio di Bologna (Bologna, 1855).
  2. E Giusti, B. Cavalieri and the Theory of Indivisibles (1980).
  3. G Piola, La vie di Boneventura Cavalieri (Milan, 1844).

Articles:

  1. A Agostini, I baricentri di gravi non omogenei e la formola generale per il loro calcolo determinati da Bonaventura Cavalieri, Boll. Un. Mat. Ital. (2) 2 (1940), 147-171.
  2. K Anderson, Cavalieri's method of indivisibles, Archive for the History of Exact Sciences 31 (4) (1985), 291-367.
  3. P E Ariotti, Bonaventura Cavalieri, Marin Mersenne, and the reflecting telescope, Isis 66 (1975), 303-321.
  4. G Arrighi, La 'Geometria indivisibilibus continuorum' de Bonaventura Cavalieri nella ritrovata stesura del 1627, Physis - Riv. Internaz. Storia Sci. 15 (1973), 133-147.
  5. G Baroncelli, Bonaventura Cavalieri between mathematics and physics (Italian), in Geometry and atomism in the Galilean school (Florence, 1992), 67-101.
  6. C B Boyer, Cavalieri, limits and discarded infinitesimals, Scripta Math. 8 (1941), 79-91.
  7. G Cellini, Le dimostrazioni di Cavalieri del suo principio, Period. Mat. (4) 44 (1966), 85-105.
  8. G Cellini, Gli indivisibili nel pensiero matematico e filosofico di Bonaventura Cavalieri, Period. Mat. (4) 44 (1966), 1-21.
  9. G Cioffarelli, Bonaventura Cavalieri's 'Treatise on the sphere' in the editions of Urbano Daviso, Boll. Storia Sci. Mat. 7 (1) (1987), 3-59.
  10. A V Dorofeeva, Bonaventura Cavalieri (1598-1647) (Russian), Mat. v Shkole (6) (1985), i, 69.
  11. E Festa, La notion d''agrégat d'indivisibles' dans la constitution de la cinématique galiléenne : Cavalieri, Galilée, Torricelli, Rev. Histoire Sci. 45 (2-3) (1992), 307-336.
  12. F De Gandt, Cavalieri's indivisibles and Euclid's canons, in Revolution and continuity (Washington, DC, 1991), 157-182.
  13. Giovanna Baroncelli, Bonaventura Cavalieri tra matematica e fisica, in M Bucciantini and M Torrini, eds. Geometria e atomismo nella scuola galileiana (Firenze, 1992), 67-101.
  14. Ma R Massa, The method of indivisibles of Bonaventura Cavalieri (Catalan), Butl. Soc. Catalana Mat. (9) (1994), 68-100.
  15. A Moretto, Hegels Auseinandersetzung mit Cavalieri und ihre Bedeutung für seine Philosophie der Mathematik, in Konzepte des mathematisch Unendlichen im 19. Jahrhundert (Göttingen, 1990), 64-99.
  16. G Terregino, The second 'ratio' of Bonaventura Cavalieri (Italian), Archimede 39 (4) (1987), 209-213.
  17. G Terregino, On Cavalieri's principle (Italian), Archimede 32 (1-2) (1980), 59-65.
  18. E Ulivi, The sources of Bonaventura Cavalieri : the construction of conics until 'The burning-glass' (1632) (Italian), Boll. Storia Sci. Mat. 7 (1) (1987), 117-179.
  19. V Vita, Gli indivisibili curvi in Bonaventura Cavalieri (Italian), Archimede 24 (1-2) (1972), 16-24.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.