المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اية الميثاق والشهادة لعلي بالولاية
2024-11-06
اية الكرسي
2024-11-06
اية الدلالة على الربوبية
2024-11-06
ما هو تفسير : اهْدِنَا الصِّراطَ الْمُسْتَقِيمَ ؟
2024-11-06
انما ارسناك بشيرا ونذيرا
2024-11-06
العلاقات الاجتماعية الخاصة / علاقة الوالدين بأولادهم
2024-11-06

حميد بن سويد الكلبي الكوفي حميد بن سيار الكوفي
26-7-2017
Electron Transfer
27-8-2018
طاقة الشمس
16-4-2016
الخرشوف (الأرضي شوكي)
25-4-2021
التخلص من الاصابات الحشرية التي تصيب التمور
10-1-2016
قانون نيوتن الثاني من وجهة نظر النسبية
24-7-2016

von Neumann-Bernays-Gödel Set Theory  
  
802   06:01 مساءً   date: 30-12-2021
Author : Itô, K.
Book or Source : "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press
Page and Part : ...


Read More
Date: 14-2-2017 1790
Date: 16-1-2022 1385
Date: 13-1-2022 1433

von Neumann-Bernays-Gödel Set Theory

von Neumann-Bernays-Gödel set theory (abbreviated "NBG") is a version of set theory which was designed to give the same results as Zermelo-Fraenkel set theory, but in a more logically elegant fashion. It can be viewed as a conservative extension of Zermelo-Fraenkel set theory in the sense that a statement about sets is provable in NBG if and only if it is provable in Zermelo-Fraenkel set theory.

Zermelo-Fraenkel set theory is not finitely axiomatized. For example, the axiom of replacement is not really a single axiom, but an infinite family of axioms, since it is preceded by the stipulation that it is true "for any set-theoretic formula A(u,v)." Montague (1961) proved that Zermelo-Fraenkel set theory is not finitely axiomatizable, i.e., there is no finite set of axioms which is logically equivalent to the infinite set of Zermelo-Fraenkel axioms. In contrast, von Neumann-Bernays-Gödel set theory has only finitely many axioms, and this was the main motivation in its construction. This was accomplished by extending the language of Zermelo-Fraenkel set theory to be capable of talking about set classes.


REFERENCES:

Itô, K. (Ed.). "Bernays-Gödel Set Theory." §33C in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 148, 1986.

Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.

Montague, R. "Semantic Closure and Non-Finite Axiomatizability. I." In Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, (Warsaw, 2-9 September 1959). Oxford, England: Pergamon, pp. 45-69, 1961.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.