المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر


Cardinal Number  
  
2046   04:13 مساءً   date: 26-12-2021
Author : Cantor, G.
Book or Source : Über unendliche, lineare Punktmannigfaltigkeiten, Arbeiten zur Mengenlehre aus dem Jahren 1872-1884. Leipzig, Germany: Teubner, 1884.
Page and Part : ...


Read More
Date: 13-1-2022 1705
Date: 30-12-2021 1354
Date: 5-1-2022 914

Cardinal Number

In common usage, a cardinal number is a number used in counting (a counting number), such as 1, 2, 3, ....

In formal set theory, a cardinal number (also called "the cardinality") is a type of number defined in such a way that any method of counting sets using it gives the same result. (This is not true for the ordinal numbers.) In fact, the cardinal numbers are obtained by collecting all ordinal numbers which are obtainable by counting a given set. A set has aleph_0 (aleph-0) members if it can be put into a one-to-one correspondence with the finite ordinal numbers. The cardinality of a set is also frequently referred to as the "power" of a set (Moore 1982, Dauben 1990, Suppes 1972).

In Georg Cantor's original notation, the symbol for a set A annotated with a single overbar A^_ indicated A stripped of any structure besides order, hence it represented the order type of the set. A double overbar A^_^_ then indicated stripping the order from the set and thus indicated the cardinal number of the set. However, in modern notation, the symbol |A| is used to denote the cardinal number of set.

Cantor, the father of modern set theory, noticed that while the ordinal numbers omega+1omega+2, ... were bigger than omega in the sense of order, they were not bigger in the sense of equipollence. This led him to study what would come to be called cardinal numbers. He called the ordinals omegaomega+1, ... that are equipollent to the integers "the second number class" (as opposed to the finite ordinals, which he called the "first number class"). Cantor showed

1. The second number class is bigger than the first.

2. There is no class bigger than the first number class and smaller than the second.

3. The class of real numbers is bigger than the first number class.

One of the first serious mathematical definitions of cardinal was the one devised by Gottlob Frege and Bertrand Russell, who defined a cardinal number |A| as the set of all sets equipollent to A. (Moore 1982, p. 153; Suppes 1972, p. 109). Unfortunately, the objects produced by this definition are not sets in the sense of Zermelo-Fraenkel set theory, but rather "proper classes" in the terminology of von Neumann.

Tarski (1924) proposed to instead define a cardinal number by stating that every set A is associated with a cardinal number |A|, and two sets A and B have the same cardinal number iff they are equipollent (Moore 1982, pp. 52 and 214; Rubin 1967, p. 266; Suppes 1972, p. 111). The problem is that this definition requires a special axiom to guarantee that cardinals exist.

A. P. Morse and Dana Scott defined cardinal number by letting A be any set, then calling |A| the set of all sets equipollent to A and of least possible rank (Rubin 1967, p. 270).

It is possible to associate cardinality with a specific set, but the process required either the axiom of foundation or the axiom of choice. However, these are two of the more controversial Zermelo-Fraenkel axioms. With the axiom of choice, the cardinals can be enumerated through the ordinals. In fact, the two can be put into one-to-one correspondence. The axiom of choice implies that every set can be well ordered and can therefore be associated with an ordinal number.

This leads to the definition of cardinal number for a set A as the least ordinal number b such that A and b are equipollent. In this model, the cardinal numbers are just the initial ordinals. This definition obviously depends on the axiom of choice, because if the axiom of choice is not true, then there are sets that cannot be well ordered. Cantor believed that every set could be well ordered and used this correspondence to define the alephs ("alephs"). For any ordinal number alphaaleph_alpha=omega_alpha.

An inaccessible cardinal cannot be expressed in terms of a smaller number of smaller cardinals.


REFERENCES:

Cantor, G. Über unendliche, lineare Punktmannigfaltigkeiten, Arbeiten zur Mengenlehre aus dem Jahren 1872-1884. Leipzig, Germany: Teubner, 1884.

Conway, J. H. and Guy, R. K. "Cardinal Numbers." In The Book of Numbers. New York: Springer-Verlag, pp. 277-282, 1996.

Courant, R. and Robbins, H. "Cantor's 'Cardinal Numbers.' " §2.4.3 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 83-86, 1996.

Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.

Ferreirós, J. "The Notion of Cardinality and the Continuum Hypothesis." Ch. 6 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser, pp. 171-214, 1999.

Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.

Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.

Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

Tarski, A. "Sur quelques théorèmes qui équivalent à l'axiome du choix." Fund. Math. 5, 147-154, 1924.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.