المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24
مواعيد زراعة الفجل
2024-11-24
أقسام الغنيمة
2024-11-24
سبب نزول قوله تعالى قل للذين كفروا ستغلبون وتحشرون الى جهنم
2024-11-24

الفلورومتر fluorometer
23-5-2019
أبو علي البصير
6-7-2019
بقية واقعة احد
23-5-2017
الجبس (جبصين)
2023-03-02
خرافات العرب قبل الاسلام
1-2-2017
محمد حسين بن محمد صالح الخاتون آبادي (ت/ 1151هـ)
29-6-2016

Harmonic Map  
  
1666   05:27 مساءً   date: 7-7-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 20-6-2021 1455
Date: 16-6-2021 1334
Date: 16-7-2021 1678

Harmonic Map

A map u:M->N, between two compact Riemannian manifolds, is a harmonic map if it is a critical point for the energy functional

 int_M|du|^2dmu_M.

The norm of the differential |du| is given by the metric on M and N and dmu_M is the measure on M. Typically, the class of allowable maps lie in a fixed homotopy class of maps.

The Euler-Lagrange differential equation for the energy functional is a non-linear elliptic partial differential equation. For example, when M is the circle, then the Euler-Lagrange equation is the same as the geodesic equation. Hence, u is a closed geodesic iff u is harmonic. The map from the circle to the equator of the standard 2-sphere is a harmonic map, and so are the maps that take the circle and map it around the equator n times, for any integer n. Note that these all lie in the same homotopy class. A higher-dimensional example is a meromorphic function on a compact Riemann surface, which is a harmonic map to the Riemann sphere.

A harmonic map may not always exist in a homotopy class, and if it does it may not be unique. When N is negatively curved, a harmonic representative exists for each homotopy class, and is also unique. For surfaces, the harmonic maps have been classified, and are precisely the holomorphic maps and the anti-holomorphic maps. Thus by Hodge's theorem for surfaces, there are no non-trivial harmonic maps from the sphere to the torus.

A harmonic map between Riemannian manifolds can be viewed as a generalization of a geodesic when the domain dimension is one, or of a harmonic function when the range is a Euclidean space.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.