المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اية الميثاق والشهادة لعلي بالولاية
2024-11-06
اية الكرسي
2024-11-06
اية الدلالة على الربوبية
2024-11-06
ما هو تفسير : اهْدِنَا الصِّراطَ الْمُسْتَقِيمَ ؟
2024-11-06
انما ارسناك بشيرا ونذيرا
2024-11-06
العلاقات الاجتماعية الخاصة / علاقة الوالدين بأولادهم
2024-11-06


Power Floors  
  
524   02:25 صباحاً   date: 21-10-2020
Author : Forman, W. and Shapiro, H. N.
Book or Source : "An Arithmetic Property of Certain Rational Powers." Comm. Pure Appl. Math
Page and Part : ...


Read More
Date: 29-10-2019 673
Date: 7-6-2020 518
Date: 19-2-2020 693

Power Floors

The sequence {|_(3/2)^n_|} is given by 1, 1, 2, 3, 5, 7, 11, 17, 25, 38, ... (OEIS A002379). The first few composite |_(3/2)^n_| occur for n=8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, ... (OEIS A046037), corresponding to the composites 25, 38, 57, 86, 129, 194, 291, 437, 656, ... (OEIS A070758). Similarly, the first few prime |_(3/2)^n_| occur for n=3, 4, 5, 6, 7, 21, 22, 98, ... (OEIS A070759), corresponding to the primes 2, 3, 5, 7, 11, 17, 4987, 7481, 180693856682317883, ... (OEIS A067904).

The sequence {|_(4/3)^n_|} is given by 1, 1, 2, 3, 4, 5, 7, 9, 13, 17, 23, ... (OEIS A064628). The first few composite |_(4/3)^n_| occur for n=5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, ... (OEIS A046038), corresponding to composites 4, 9, 42, 56, 74, 99, 133, 177, 236, ... (OEIS A070761). Similarly, the first few prime |_(4/3)^n_| occur for n=4, 6, 7, 9, 10, 11, 12, 38, 42, 59, 96,... (OEIS A070762), corresponding to the primes 2, 3, 5, 7, 13, 17, 23, 31, 55933, 176777, 23517191, ... (OEIS A067905).

There are infinitely many integers of the form |_(3/2)^n_| and |_(4/3)^n_| which are composite, where |_x_| is the floor function (Forman and Shapiro, 1967; Guy 1994, p. 220).


REFERENCES:

Forman, W. and Shapiro, H. N. "An Arithmetic Property of Certain Rational Powers." Comm. Pure Appl. Math. 20, 561-573, 1967.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Sloane, N. J. A. Sequences A002379/M0666, A046037, A046038, A064628, A067904, A067905, A070758, A070759, A070761, and A070762 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.