المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الدالة الزوجية : Even Function
31-10-2021
نواة مركبة = نواة وسطى compound nucleus = intermediate nucleus
18-6-2018
التأني
15-4-2021
هل ينسى النبيّ (صلى الله عليه واله) القرآن ؟!
18-11-2014
أحمد بن عائذ الاحمسيّ
5-9-2016
plateauing (n.)
2023-10-27

Lucas Number  
  
1708   02:26 صباحاً   date: 24-9-2020
Author : Borwein, J. M. and Borwein, P. B.
Book or Source : Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley
Page and Part : ...


Read More
Date: 28-8-2020 767
Date: 16-8-2020 649
Date: 22-11-2020 768

Lucas Number

The Lucas numbers are the sequence of integers {L_n}_(n=1)^infty defined by the linear recurrence equation

 L_n=L_(n-1)+L_(n-2)

(1)

with L_1=1 and L_2=3. The nth Lucas number is implemented in the Wolfram Language as LucasL[n].

The values of L_n for n=1, 2, ... are 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... (OEIS A000204).

The Lucas numbers are also a Lucas sequence V_n(1,-1) and are the companions to the Fibonacci numbers F_n and satisfy the same recurrence.

The number of ways of picking a set (including the empty set) from the numbers 1, 2, ..., n without picking two consecutive numbers (where 1 and n are now consecutive) is L_n (Honsberger 1985, p. 122).

The only square numbers in the Lucas sequence are 1 and 4 (Alfred 1964, Cohn 1964). The only triangular Lucas numbers are 1, 3, and 5778 (Ming 1991). The only cubic Lucas number is 1.

Rather amazingly, if n is prime, L_n=1 (mod n). The converse does not necessarily hold true, however, and composite numbers n such that L_n=1 (mod n) are known as Lucas pseudoprimes.

For n=1, 2, ..., the numbers of decimal digits in L_(10^n) are 1, 3, 21, 209, 2090, 20899, 208988, 2089877, ... (OEIS A114469). As can be seen, the initial strings of digits settle down to produce the number 208987640249978733769..., which corresponds to the decimal digits of lnphi=0.2089876... (OEIS A097348), where phi is the golden ratio. This follows from the fact that for any power function f_n=c^n, the number of decimal digits for f_(10^n) is given by 10^nlog_(10)c.

The lengths of the cycles for Lucas numbers (mod 10^n) for n=1, 2, ... are 12, 60, 300, 3000, 30000, 300000, 300000, ... (OEIS A114307).

The analog of Binet's Fibonacci number formula for Lucas numbers is

 L_n=((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n.

(2)

Another formula is

 L_n=[phi^n]

(3)

for n>=2, where phi is the golden ratio and [x] denotes the nearest integer function.

Another recurrence relation for L_n is given by,

 L_(n+1)=|_(L_n(1+sqrt(5))+1)/2_|

(4)

for n>=4, where |_x_| is the floor function.

Additional identities satisfied by Lucas numbers include

 L_n^2-L_(n-1)L_(n+1)=5(-1)^n,

(5)

and

 sum_(k=1)^nL_k^2=L_nL_(n+1)-2.

(6)

The Lucas numbers obey the negation formula

 L_(-n)=(-1)^nL_n,

(7)

the addition formula

 L_(m+n)=1/2(5F_mF_n+L_mL_n),

(8)

where F_n is a Fibonacci number, the subtraction formula

 L_(m-n)=1/2(-1)^n(L_mL_n-5F_mF_n),

(9)

the fundamental identity

 L_n^2-5F_n^2=4(-1)^n,

(10)

conjugation relation

 L_n=F_(n-1)+F_(n+1),

(11)

successor relation

 L_(n+1)=1/2(5F_n+L_n),

(12)

double-angle formula

 L_(2n)=1/2(5F_n^2+L_n^2),

(13)

multiple-angle recurrence

 L_(kn)=L_kL_(k(n-1))-(-1)^kL_(k(n-2)),

(14)

multiple-angle formulas

L_(kn) = 1/(2^(k-1))sum_(i=0)^(|_k/2_|)(k; 2i)5^iF_n^(2i)L_n^(k-2i)

(15)

= sum_(i=0)^(|_k/2_|)k/(k-i)(k-i; i)(-1)^(i(n+1))L_n^(k-2i)

(16)

= {sum_(i=0)^(k/2)k/(k-i)(k-i; i)(-1)^(in)5^(k/2-i)F_n^(k-2i) for k even; L_nsum_(i=0)^(|_k/2_|)(k-1-i; i)(-1)^(in)5^(|_k/2_|-i)F_n^(k-1-2i) for k odd

(17)

= sum_(i=0)^(k)(k; i)L_iF_n^iF_(n-1)^(k-i),

(18)

product expansions

 F_mL_n=F_(m+n)+(-1)^nF_(m-n)

(19)

and

 F_mF_n=1/5[L_(m+n)-(-1)^nL_(m-n)],

(20)

square expansion,

 L_n^2=L_(2n)+2(-1)^n,

(21)

and power expansion

 L_n^k=1/2sum_(i=0)^k(k; i)(-1)^(in)L_((k-2i)n).

(22)

The Lucas numbers satisfy the power recurrence

 sum_(j=0)^(t+1)(-1)^(j(j+1)/2)[t+1; j]_FL_(n-j)^t=0,

(23)

where [a; b]_F is a Fibonomial coefficient, the reciprocal sum

 sum_(k=1)^n((-1)^k)/(L_kL_(k+a))=(F_n)/(F_a)sum_(k=1)^a((-1)^k)/(L_kL_(k+n)),

(24)

the convolution

 sum_(k=0)^nL_kL_(n-k)=(n+2)L_n+F_n,

(25)

the partial fraction decomposition

 -5/(L_(n+a)L_(n+b)L_(n+c))=A/(L_(n+a))+B/(L_(n+b))+C/(L_(n+c)),

(26)

where

A = ((-1)^(n-a))/(F_(b-a)F_(c-a))

(27)

B = ((-1)^(n-b))/(F_(c-b)F_(a-b))

(28)

C = ((-1)^(n-c))/(F_(a-c)F_(b-c)),

(29)

and the summation formula

 sum_(k=0)^nx^kL_(ak+b)=(g(n+1)-g(0))/(1-L_ax+(-1)^ax^2),

(30)

where

 g(n)=(-1)^aL_(a(n-1)+b)x^(n+1)-L_(an+b)x^n.

(31)

Let p be a prime >3 and k be a positive integer. Then L_(2p^k) ends in a 3 (Honsberger 1985, p. 113). Analogs of the Cesàro identities for Fibonacci numbers are

 sum_(k=0)^n(n; k)L_k=L_(2n)

(32)

 sum_(k=0)^n(n; k)2^kL_k=L_(3n),

(33)

where (n; k) is a binomial coefficient.

L_n|F_m (L_n divides F_m) iff n divides into m an even number of times. L_n|L_m iff n divides into m an odd number of times. 2^nL_n always ends in 2 (Honsberger 1985, p. 137).

Defining

 D_n=|3 i 0 0 ... 0 0; i 1 i 0 ... 0 0; 0 i 1 i ... 0 0; 0 0 i 1 ... 0 0; | | | | ... | |; 0 0 0 0 ... 1 i; 0 0 0 0 ... i 1|=L_(n+1)

(34)

gives

 D_n=D_(n-1)+D_(n-2)

(35)

(Honsberger 1985, pp. 113-114).


REFERENCES:

Alfred, Brother U. "On Square Lucas Numbers." Fib. Quart. 2, 11-12, 1964.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 94-101, 1987.

Brillhart, J.; Montgomery, P. L.; and Silverman, R. D. "Tables of Fibonacci and Lucas Factorizations." Math. Comput. 50, 251-260 and S1-S15, 1988.

Broadhurst, D. and Irvine, S. "Lucas Record." Post to primeform user forum. Jun. 19, 2006. https://groups.yahoo.com/group/primeform/message/7534.

Brown, J. L. Jr. "Unique Representation of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7, 243-252, 1969.

Cohn, J. H. E. "Square Fibonacci Numbers, etc." Fib. Quart. 2, 109-113, 1964.

Dubner, H. and Keller, W. "New Fibonacci and Lucas Primes." Math. Comput. 68, 417-427 and S1-S12, 1999.

Guy, R. K. "Fibonacci Numbers of Various Shapes." §D26 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 194-195, 1994.

Hilton, P.; Holton, D.; and Pedersen, J. "Fibonacci and Lucas Numbers." Ch. 3 in Mathematical Reflections in a Room with Many Mirrors. New York: Springer-Verlag, pp. 61-85, 1997.

Hilton, P. and Pedersen, J. "Fibonacci and Lucas Numbers in Teaching and Research." J. Math. Informatique 3, 36-57, 1991-1992.

Hoggatt, V. E. Jr. The Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin, 1969.

Honsberger, R. "A Second Look at the Fibonacci and Lucas Numbers." Ch. 8 in Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.

Koshy, T. Fibonacci and Lucas Numbers with Applications. New York: Wiley, 2001.

Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/lucas.Z

Lifchitz, H. and Lifchitz, R. "PRP Top Records." https://www.primenumbers.net/prptop/searchform.php?form=L(n).

Ming, L. "On Triangular Lucas Numbers." Applications of Fibonacci Numbers, Vol. 4 (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 231-240, 1991.

Sloane, N. J. A. Sequences A000204/M2341, A001606/M0961, A005479/M2627, A068070, A097348, A114469, and A114307 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.