 
					
					
						Secant Method					
				 
				
					
						 المؤلف:  
						Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
						 المؤلف:  
						Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.					
					
						 المصدر:  
						 "Secant Method, False Position Method, and Ridders Method." §9.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press
						 المصدر:  
						 "Secant Method, False Position Method, and Ridders Method." §9.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press					
					
						 الجزء والصفحة:  
						pp. 347-352
						 الجزء والصفحة:  
						pp. 347-352					
					
					
						 14-12-2021
						14-12-2021
					
					
						 1895
						1895					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Secant Method

A root-finding algorithm which assumes a function to be approximately linear in the region of interest. Each improvement is taken as the point where the approximating line crosses the axis. The secant method retains only the most recent estimate, so the root does not necessarily remain bracketed. The secant method is implemented in the Wolfram Language as the undocumented option Method -> Secant in FindRoot[eqn, ![<span style=]() {" src="https://mathworld.wolfram.com/images/equations/SecantMethod/Inline1.gif" style="height:15px; width:5px" />x, x0, x1
{" src="https://mathworld.wolfram.com/images/equations/SecantMethod/Inline1.gif" style="height:15px; width:5px" />x, x0, x1![<span style=]() }" src="https://mathworld.wolfram.com/images/equations/SecantMethod/Inline2.gif" style="height:15px; width:5px" />].
}" src="https://mathworld.wolfram.com/images/equations/SecantMethod/Inline2.gif" style="height:15px; width:5px" />].
When the algorithm does converge, its order of convergence is
	
		
			|  | (1) | 
	
where  is a constant and
 is a constant and  is the golden ratio.
 is the golden ratio.
	
		
			|  | (2) | 
	
	
		
			|  | (3) | 
	
	
		
			|  | (4) | 
	
so
	
		
			|  | (5) | 
	
The secant method can be implemented in the Wolfram Language as
  SecantMethodList[f_, {x_, x0_, x1_}, n_] :=
    NestList[Last[#] - {0, (Function[x, f][Last[#]]*
      Subtract @@ #)/Subtract @@
      Function[x, f] /@ #}&, {x0, x1}, n]
REFERENCES:
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Secant Method, False Position Method, and Ridders' Method." §9.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 347-352, 1992.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة