x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Chebyshev-Gauss Quadrature
المؤلف: Abramowitz, M. and Stegun, I. A
المصدر: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
الجزء والصفحة: ...
2-12-2021
763
Chebyshev-Gauss quadrature, also called Chebyshev quadrature, is a Gaussian quadrature over the interval with weighting function (Abramowitz and Stegun 1972, p. 889). The abscissas for quadrature order are given by the roots of the Chebyshev polynomial of the first kind , which occur symmetrically about 0. The weights are
(1) |
|||
(2) |
where is the coefficient of in ,
(3) |
and the order- Lagrange interpolating polynomial for .
For Chebyshev polynomials of the first kind,
(4) |
so
(5) |
Additionally,
(6) |
so
(7) |
Since
(8) |
the abscissas are given explicitly by
(9) |
Since
(10) |
|||
(11) |
where
(12) |
all the weights are
(13) |
The explicit formula is then
(14) |
The following two tables give the numerical and analytic values for the first few points and weights.
2 | 1.5708 | |
3 | 0 | 1.0472 |
1.0472 | ||
4 | 0.785398 | |
0.785398 | ||
5 | 0 | 0.628319 |
0.628319 | ||
0.628319 |
2 | ||
3 | 0 | |
3 | ||
4 | ||
4 | ||
5 | 0 | |
5 | ||
5 |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 889, 1972.
Bronwin, B. "On the Determination of the Coefficients in Any Series of Sines and Cosines of Multiples of a Variable Angle from Particular Values of that Series." Phil. Mag. 34, 260-268, 1849.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 330-331, 1956.
Tchebicheff, P. "Sur les quadratures." J. de math. pures appliq. 19, 19-34, 1874.
Whittaker, E. T. and Robinson, G. "Chebyshef's Formulae." §79 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 158-159, 1967.