 
					
					
						Chebyshev-Gauss Quadrature					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 2-12-2021
						2-12-2021
					
					
						 2035
						2035					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Chebyshev-Gauss Quadrature
Chebyshev-Gauss quadrature, also called Chebyshev quadrature, is a Gaussian quadrature over the interval ![[-1,1]](https://mathworld.wolfram.com/images/equations/Chebyshev-GaussQuadrature/Inline1.gif) with weighting function
 with weighting function  (Abramowitz and Stegun 1972, p. 889). The abscissas for quadrature order
 (Abramowitz and Stegun 1972, p. 889). The abscissas for quadrature order  are given by the roots of the Chebyshev polynomial of the first kind
 are given by the roots of the Chebyshev polynomial of the first kind  , which occur symmetrically about 0. The weights are
, which occur symmetrically about 0. The weights are
where  is the coefficient of
 is the coefficient of  in
 in  ,
,
	
		
			|  | (3) | 
	
and  the order-
 the order- Lagrange interpolating polynomial for
 Lagrange interpolating polynomial for  .
.
For Chebyshev polynomials of the first kind,
	
		
			|  | (4) | 
	
so
	
		
			|  | (5) | 
	
Additionally,
	
		
			|  | (6) | 
	
so
	
		
			|  | (7) | 
	
Since
	
		
			|  | (8) | 
	
the abscissas are given explicitly by
	
		
			| ![x_i=cos[((2i-1)pi)/(2n)].](https://mathworld.wolfram.com/images/equations/Chebyshev-GaussQuadrature/NumberedEquation7.gif) | (9) | 
	
Since
where
	
		
			|  | (12) | 
	
all the weights are
	
		
			|  | (13) | 
	
The explicit formula is then
	
		
			| ![int_(-1)^1(f(x)dx)/(sqrt(1-x^2))=pi/nsum_(k=1)^nf[cos((2k-1)/(2n)pi)]+(2pi)/(2^(2n)(2n)!)f^((2n))(xi).](https://mathworld.wolfram.com/images/equations/Chebyshev-GaussQuadrature/NumberedEquation10.gif) | (14) | 
	
The following two tables give the numerical and analytic values for the first few points and weights.
	
		
			|  |  |  | 
		
			| 2 |  | 1.5708 | 
		
			| 3 | 0 | 1.0472 | 
		
			|  |  | 1.0472 | 
		
			| 4 |  | 0.785398 | 
		
			|  |  | 0.785398 | 
		
			| 5 | 0 | 0.628319 | 
		
			|  |  | 0.628319 | 
		
			|  |  | 0.628319 | 
	
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 889, 1972.
Bronwin, B. "On the Determination of the Coefficients in Any Series of Sines and Cosines of Multiples of a Variable Angle from Particular Values of that Series." Phil. Mag. 34, 260-268, 1849.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 330-331, 1956.
Tchebicheff, P. "Sur les quadratures." J. de math. pures appliq. 19, 19-34, 1874.
Whittaker, E. T. and Robinson, G. "Chebyshef's Formulae." §79 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 158-159, 1967.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة