x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Convergence Improvement
المؤلف: Abramowitz, M. and Stegun, I. A.
المصدر: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة: ...
9-12-2021
910
The improvement of the convergence properties of a series, also called convergence acceleration or accelerated convergence, such that a series reaches its limit to within some accuracy with fewer terms than required before. Convergence improvement can be effected by forming a linear combination with a series whose sum is known. Useful sums include
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
Kummer's transformation takes a convergent series
(5) |
and another convergent series
(6) |
with known such that
(7) |
Then a series with more rapid convergence to the same value is given by
(8) |
(Abramowitz and Stegun 1972).
The Euler transform takes a convergent alternating series
(9) |
into a series with more rapid convergence to the same value to
(10) |
where
(11) |
(Abramowitz and Stegun 1972; Beeler et al. 1972).
A general technique that can be used to acceleration converge of series is to expand them in a Taylor series about infinity and interchange the order of summation. In cases where a symbolic form for the Taylor series can be found, this come sometimes even allow the sum over the original variable to be done symbolically. For example, consider the case of the sum
(12) |
(OEIS A085361) that arises in the definition of the Alladi-Grinstead constant. The summand can be expanded about infinity to get
(13) |
|||
(14) |
Interchanging the order of summation then gives
(15) |
|||
(16) |
where is the Riemann zeta function, which converges much more rapidly.
A transformations of the form
(17) |
where
(18) |
is the th partial sum of a sequence , can often be useful for improving series convergence (Hamming 1986, p. 205). In particular, can be written
(19) |
|||
(20) |
The application of this transformation can be efficiently carried out using Wynn's epsilon method. Letting , , and
(21) |
for , 2, ... (correcting the typo of Hamming 1986, p. 206). The values of are there equivalent to the results of applying transformations to the sequence (Hamming 1986, p. 206).
Given a series of the form
(22) |
where is an analytic at 0 and on the closed unit disk, and
(23) |
then the series can be rearranged to
(24) |
|||
(25) |
|||
(26) |
where
(27) |
is the Maclaurin series of and is the Riemann zeta function (Flajolet and Vardi 1996). The transformed series exhibits geometric convergence. Similarly, if is analytic in for some positive integer , then
(28) |
which converges geometrically (Flajolet and Vardi 1996). Equation (28) can also be used to further accelerate the convergence of series (◇).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 288-289, 1985.
Beeler et al. Item 120 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 55, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/series.html#item120.
Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.
Hamming, R. W. Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, pp. 206-207, 1986.
Shanks, D. "Nonlinear Transformations of Divergent and Slowly Convergent Sequences." J. Math. Phys. 34, 1-42, 1955.
Sloane, N. J. A. Sequence A085361 in "The On-Line Encyclopedia of Integer Sequences."