 
					
					
						Radau Quadrature					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 7-12-2021
						7-12-2021
					
					
						 2054
						2054					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Radau Quadrature
A Gaussian quadrature-like formula for numerical estimation of integrals. It requires  points and fits all polynomials to degree
 points and fits all polynomials to degree  , so it effectively fits exactly all polynomials of degree
, so it effectively fits exactly all polynomials of degree  . It uses a weighting function
. It uses a weighting function  in which the endpoint
 in which the endpoint  in the interval
 in the interval ![[-1,1]](https://mathworld.wolfram.com/images/equations/RadauQuadrature/Inline6.gif) is included in a total of
 is included in a total of  abscissas, giving
 abscissas, giving  free abscissas. The general formula is
 free abscissas. The general formula is
	
		
			|  | (1) | 
	
The free abscissas  for
 for  , ...,
, ...,  are the roots of the polynomial
 are the roots of the polynomial
	
		
			|  | (2) | 
	
where  is a Legendre polynomial. The weights of the free abscissas are
 is a Legendre polynomial. The weights of the free abscissas are
and of the endpoint
	
		
			|  | (5) | 
	
The error term is given by
	
		
			| ![E=(2^(2n-1)n[(n-1)!]^4)/([(2n-1)!]^3)f^((2n-1))(xi),](https://mathworld.wolfram.com/images/equations/RadauQuadrature/NumberedEquation4.gif) | (6) | 
	
for  .
.
	
		
			|  |  |  | 
		
			| 2 |  | 0.5 | 
		
			|  | 0.333333 | 1.5 | 
		
			| 3 |  | 0.222222 | 
		
			|  |  | 1.02497 | 
		
			|  | 0.689898 | 0.752806 | 
		
			| 4 |  | 0.125 | 
		
			|  |  | 0.657689 | 
		
			|  | 0.181066 | 0.776387 | 
		
			|  | 0.822824 | 0.440924 | 
		
			| 5 |  | 0.08 | 
		
			|  |  | 0.446208 | 
		
			|  |  | 0.623653 | 
		
			|  | 0.446314 | 0.562712 | 
		
			|  | 0.885792 | 0.287427 | 
	
The abscissas and weights can be computed analytically for small  .
.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 888, 1972.
Chandrasekhar, S. Radiative Transfer. New York: Dover, p. 61, 1960.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 338-343, 1956.
Ueberhuber, C. W. Numerical Computation 2: Methods, Software, and Analysis. Berlin: Springer-Verlag, p. 105, 1997.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة