x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Polynomial Roots
المؤلف: Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H.
المصدر: Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
الجزء والصفحة: ...
14-12-2021
907
A root of a polynomial is a number such that . The fundamental theorem of algebra states that a polynomial of degree has roots, some of which may be degenerate. For example, the roots of the polynomial
(1) |
are , 1, and 2. Finding roots of a polynomial is therefore equivalent to polynomial factorization into factors of degree 1.
Any polynomial can be numerically factored, although different algorithms have different strengths and weaknesses.
The roots of a polynomial equation may be found exactly in the Wolfram Language using Roots[lhs==rhs, var], or numerically using NRoots[lhs==rhs, var]. In general, a given root of a polynomial is represented as Root[#^n+a[n-1]#^(n-1)+...+a[0]&, k], where , 2, ..., is an index identifying the particular root and the pure function polynomial is irreducible. Note that in the Wolfram Language, the ordering of roots is different in each of the commands Roots, NRoots, and Table[Root[p, k], k, n].
In the Wolfram Language, algebraic expressions involving Root objects can be combined into a new Root object using the command RootReduce.
In this work, the th root of a polynomial in the ordering of the Wolfram Language's Root object is denoted , where is a dummy variable. In this ordering, real roots come before complex ones and complex conjugate pairs of roots are adjacent. For example,
(2) |
|||
(3) |
and
(4) |
|||
(5) |
|||
(6) |
Let the roots of the polynomial
(7) |
be denoted , , ..., . Then Vieta's formulas give
(8) |
|||
(9) |
|||
(10) |
These can be derived by writing
(11) |
expanding, and then comparing the coefficients with (◇).
Given an th degree polynomial , the roots can be found by finding the eigenvalues of the matrix
(12) |
and taking . This method can be computationally expensive, but is fairly robust at finding close and multiple roots.
If the coefficients of the polynomial
(13) |
are specified to be integers, then rational roots must have a numerator which is a factor of and a denominator which is a factor of (with either sign possible). This is known as the polynomial remainder theorem.
If there are no negative roots of a polynomial (as can be determined by Descartes' sign rule), then the greatest lower bound is 0. Otherwise, write out the coefficients, let , and compute the next line. Now, if any coefficients are 0, set them to minus the sign of the next higher coefficient, starting with the second highest order coefficient. If all the signs alternate, is the greatest lower bound. If not, then subtract 1 from , and compute another line. For example, consider the polynomial
(14) |
Performing the above algorithm then gives
0 | 2 | 2 | 1 | ||
2 | 0 | 8 | |||
-- | 2 | 8 | |||
2 | 7 | ||||
2 | 5 | 35 |
so the greatest lower bound is .
If there are no positive roots of a polynomial (as can be determined by Descartes' sign rule), the least upper bound is 0. Otherwise, write out the coefficients of the polynomials, including zeros as necessary. Let . On the line below, write the highest order coefficient. Starting with the second-highest coefficient, add times the number just written to the original second coefficient, and write it below the second coefficient. Continue through order zero. If all the coefficients are nonnegative, the least upper bound is . If not, add one to and repeat the process again. For example, take the polynomial
(15) |
Performing the above algorithm gives
0 | 2 | 1 | |||
1 | 2 | 1 | |||
2 | 2 | 3 | |||
3 | 2 | 5 | 8 | 25 | 68 |
so the least upper bound is 3.
Plotting the roots in the complex plane of all polynomials up to some degree with integer coefficients less than some cutoff integer in absolute value shows the beautiful structure illustrated above (Trott 2004, p. 23).
An even more stunning figure is obtained by plotting all roots of all polynomials with coefficients up to degree (Borwein and Jörgenson 2001; Pickover 2002; Bailey et al. 2007, p. 18).
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Bharucha-Reid, A. T. and Sambandham, M. Random Polynomials. New York: Academic Press, 1986.
Borwein, P. and Jörgenson, L. "Visible Structures in Number Theory." Amer. Math. Monthly 108, 897-911, 2001.
Borwein, P. Computational Excursions in Analysis and Number Theory. New York: Springer-Verlag, 2002.
Odlyzko, A. M.; and Poonen, B. "Zeros of Polynomials with Coefficients." L'Enseignement Math. 39, 317-348, 1993.
Pan, V. Y. "Solving a Polynomial Equation: Some History and Recent Progress." SIAM Rev. 39, 187-220, 1997.
Pickover, C. A. The Mathematics of Oz: Mental Gymnastics from Beyond the Edge. New York: Cambridge University Press, pp. 286-287, 2002.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.