 
					
					
						Hermite-Gauss Quadrature					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 12-12-2021
						12-12-2021
					
					
						 1579
						1579					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Hermite-Gauss Quadrature
Hermite-Gauss quadrature, also called Hermite quadrature, is a Gaussian quadrature over the interval  with weighting function
 with weighting function  (Abramowitz and Stegun 1972, p. 890). The abscissas for quadrature order
 (Abramowitz and Stegun 1972, p. 890). The abscissas for quadrature order  are given by the roots
 are given by the roots  of the Hermite polynomials
 of the Hermite polynomials  , which occur symmetrically about 0. The weights are
, which occur symmetrically about 0. The weights are
where  is the coefficient of
 is the coefficient of  in
 in  . For Hermite polynomials,
. For Hermite polynomials,
	
		
			|  | (3) | 
	
so
	
		
			|  | (4) | 
	
Additionally,
	
		
			|  | (5) | 
	
so
where (8) and (9) follow using the recurrence relation
	
		
			|  | (11) | 
	
to obtain
	
		
			|  | (12) | 
	
and (10) is from Abramowitz and Stegun (1972 p. 890).
The error term is
	
		
			|  | (13) | 
	
Beyer (1987) gives a table of abscissas and weights up to  .
.
	
		
			|  |  |  | 
		
			| 2 |  | 0.886227 | 
		
			| 3 | 0 | 1.18164 | 
		
			|  |  | 0.295409 | 
		
			| 4 |  | 0.804914 | 
		
			|  |  | 0.0813128 | 
		
			| 5 | 0 | 0.945309 | 
		
			|  |  | 0.393619 | 
		
			|  |  | 0.0199532 | 
	
The abscissas and weights can be computed analytically for small  .
.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 890, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 464, 1987.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 327-330, 1956.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة