المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
Rise-fall Λyes Λno
2024-11-05
Fall-rise vyes vno
2024-11-05
Rise/yes/no
2024-11-05
ماشية اللحم كالميك في القوقاز Kalmyk breed
2024-11-05
Fallyes o
2024-11-05
تركيب وبناء جسم الحيوان (الماشية)
2024-11-05

Proteoliposomes
13-10-2019
التخطيط على نطاق المجتمع
2-8-2022
احرف الشرط
20-10-2014
تعريف الاستراتيجية
25/10/2022
Theodore Samuel Motzkin
14-11-2017
الهدرجة. حرارة الهدرجة
30-3-2017

Alexander Fairley Buchan  
  
99   02:17 مساءً   date: 6-9-2017
Author : Biographical Index of Staff and Alumni
Book or Source : University of Edinburgh
Page and Part : ...


Read More
Date: 18-9-2017 123
Date: 14-9-2017 109
Date: 11-10-2017 141

Born: 1904 in Edinburgh, Scotland

Died: 10 January 1976 in Edinburgh, Scotland


Alexander Buchan's father was John R Buchan. Alexander attended Sciennes School, Edinburgh, in 1916, then George Heriot's School, Edinburgh, from 1916-1922. In September 1922 he obtained passes at Higher level in the Scottish Leaving Certificate examinations in English, Mathematics, German, Science, and Dynamics.

After completing his studies at George Heriot's, Buchan entered the University of Edinburgh, matriculating in October 1922 when he entered the Faculty of Pure Science. He was awarded a B.Sc. (Pure) with First Class Honours from Edinburgh on 20 July 1926 and became a mathematics teacher at Gillespie's School, Edinburgh.

After working between 1930 to 1935 as a teacher at the Royal High School, Edinburgh, Buchan then became Principal Teacher of Mathematics at James Gillespie's High School for Girls, Edinburgh. He continued to have strong research interests in mathematics and, in 1939, he submitted his thesis Linear Combination of Data with Least Error of Differences to the University of Edinburgh and was awarded a Ph.D. on 30 June of that year. His thesis advisor at Edinburgh was Alexander Aitken.

During World War II Buchan was Squadron Leader and Commandant in the Air Training Corps in Scotland. His final appointment was as Principal Lecturer in Mathematics at Moray House College of Education, Edinburgh. He represented Scotland in the Emergency Scheme for the Training of Teachers in India. For his services he was awarded the M.B.E.

Alexander Buchan was a member of the Edinburgh Mathematical Society, joining in February 1927. He was elected to the Royal Society of Edinburgh on 4 March 1940, his proposers being Sir Edmund T Whittaker, Alexander Craig Aitken, David Gibb, Robert Schlapp.
An obituary, written by Douglas M Mcintosh, appears in the Royal Society of Edinburgh Year Book 1977, pages 27-28. 
We give a version of this obituary at THIS LINK.

Finally we note Buchan's association with Scottish Freemasonry. He was Grand Secretary of the Grand Lodge of Scotland from 1948 to 1971. The report of his appointment contains a few more details of his life:

SCOTTISH FREEMASONS 
New Grand Secretary Elected 
DR ALEXANDER F BUCHAN

At a quarterly meeting of the Grand Lodge of Scotland held in Freemasons' Hall, Edinburgh, yesterday (Thursday 5 February 1948) - the Grand Master Mason, the Earl of Galloway, presiding - Mr Alexander Fairley Buchan, M.B.E., B.Sc. Ph.D., F.R.S.E.. was elected Grand Secretary in succession to Dr W King Gillies, who was appointed in 1941 to serve for the period of the war and whose resignation was accepted with regret last year.

Dr Buchan, who is 42 years of age, was formerly principal master of mathematics in James Gillespie's High School, and since then principal lecturer in mathematics and Master of Method in Moray House Training College, Edinburgh. During the recent war he was first employed in connection with the Children's Overseas Reception Board and supervised and accompanied 100 children to Canada in 1940. He served in the Royal Air Force for three years, with the rank of Squadron Leader. As Senior Administrative Staff Officer to the A.T.C. Commandant in Scotland he was responsible for the administration and training of all units in Scotland. The Scottish Education Department sent him to India to represent Scotland under the Emergency Scheme for the training of teachers.

The Grand Secretaryship to which Dr Buchan has been elected is a full-time salaried appointment. At the present time Dr Buchan is Master of one of the oldest Lodges in existence, Canongate Kilwinning No. 2, Edinburgh.

Immediately following his election. Dr Buchan was installed in office by the Grand Master Mason.


 

  1. D M Mcintosh, Alexander Fairley Buchan B.Sc., Ph.D. (Edin.), Royal Society of Edinburgh Year Book 1977, 27-28.
  2. Biographical Index of Staff and Alumni (University of Edinburgh).
  3. Graduates in Arts, 1884-1925 (University of Edinburgh).
  4. Graduates in Arts (University of Edinburgh).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.