المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر



هندسة تحليلية Analytic Geometry  
  
1760   09:21 صباحاً   التاريخ: 29-12-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 374
القسم : الرياضيات / الهندسة / مواضيع عامة في الهندسة /


أقرأ أيضاً
التاريخ: 29-12-2015 1985
التاريخ: 13-12-2015 924
التاريخ: 5-11-2015 779
التاريخ: 7-12-2015 8803

انها من فروع الرياضيات الأكثر أهمية من غيره , كونها تربط مفاهيم الجبر بمفاهيم الهندسة وتمزج البناء الجبري للرياضيات بالبناء الهندسي لها , مما يتيح لنا تمثيل الرموز والتعابير الجبرية هندسياً .

وتسمى أيضاً هندسة  النقاط أو الهندسة الديكارتية لأن موضوع هذه الهندسة قد تبلور وأصبح على ما هو عليه على يد الرياضي والفيلسوف الفرنسي ديكارت ( 1596 – 1650)م التي تنسب إليه .

وتبحث هذه الهندسة بشكل خاص في تعيين النقط على المستوى ثنائي الأبعاد والمسمى المستوى الديكارتي كما في الشكل .

وفي تعيين النقط في الفضاء ثلاثي الأبعاد كما في الشكل .

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.