المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

THE CELSIUS (OR CENTIGRADE) SCALE
21-9-2020
سرية أسامة
26-11-2019
معادلة "كالندر" Callender equation
4-3-2018
Albrecht Dürer
22-10-2015
الحلف بالله كاذباً
2024-01-04
دراسة الدفق Fluxomics
7-5-2018


تكامل بالكسور الجزئية Integration by partid Fractions  
  
15606   11:28 صباحاً   التاريخ: 3-11-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 90
القسم : الرياضيات / التفاضل و التكامل /


أقرأ أيضاً
التاريخ: 24-3-2019 1755
التاريخ: 10-11-2021 3479
التاريخ: 15-5-2018 1376
التاريخ: 16-8-2018 1660

أنها طريقة لتكامل الاقترانات النسبية والتي بسطها لا يظهر في مشتقة مقامها , إذ يجزأ الاقتران النسبي إلى اقترانات جزئية أخرى بحيث يصبح بسط كل منها يظهر في مشتقة مقامه ومن تم يتم تطبيق القاعدة

شرط أن يكون مقام الاقتران النسبي جذر حدود وتربيعي وقابل للتحليل إلى اقترانات خطية غير متطابقة وإلا فالطريقة معقدة وخارجة عن نطاق الرياضيات .

مثال :      

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.