المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

The creoles of Trinidad and Tobago: phonology Conclusions
2024-04-13
بدائـل إستراتيجيـة العمليـات الدوليـة
27-12-2020
ما هي الإمامة وما هو الدليل على وجوبها
28-8-2019
e Continued Fraction
2-2-2020
Graphoid
28-3-2022
الجمع المثلثي للمتجهات
5-7-2016


The rate of radiation of energy  
  
931   02:07 صباحاً   التاريخ: 2024-03-23
المؤلف : Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 32
القسم : علم الفيزياء / الفيزياء الحديثة / الفيزياء الذرية /


أقرأ أيضاً
التاريخ: 2023-05-30 1051
التاريخ: 1-2-2022 1502
التاريخ: 17-9-2020 1269
التاريخ: 17-9-2020 1297

Now we shall calculate the total energy radiated by an accelerating charge. To keep the discussion general, we shall take the case of a charge accelerating any which way, but nonrelativistically. At a moment when the acceleration is, say, vertical, we know that the electric field that is generated is the charge multiplied by the projection of the retarded acceleration, divided by the distance. So, we know the electric field at any point, and we therefore know the square of the electric field and thus the energy ϵ0cE2 leaving through a unit area per second.

The quantity ϵ0c appears quite often in expressions involving radiowave propagation. Its reciprocal is called the impedance of a vacuum, and it is an easy number to remember: it has the value 1/ϵ0c=377 ohms. So, the power in watts per square meter is equal to the average of the field squared, divided by 377.

Fig. 32–1. The area of a spherical segment is 2πr sinθ ⋅ r dθ.

 

Using our expression (29.1) for the electric field, we find that

is the power per square meter radiated in the direction θ. We notice that it goes inversely as the square of the distance, as we said before. Now suppose we wanted the total energy radiated in all directions: then we must integrate (32.2) over all directions. First, we multiply by the area, to find the amount that flows within a little angle dθ (Fig. 32–1). We need the area of a spherical section. The way to think of it is this: if r is the radius, then the width of the annular segment is r dθ, and the circumference is 2πr sinθ, because r sinθ is the radius of the circle. So, the area of the little piece of the sphere is 2πr sinθ times r dθ:

By multiplying the flux [(32.2), the power per square meter] by the area in square meters included in the small angle dθ, we find the amount of energy that is liberated in this direction between θ and θ+dθ; then we integrate that over all the angles θ from 0 to 180:

By writing sin3θ = (1−cos2θ) sinθ it is not hard to show that Using that fact, we finally get

This expression deserves some remarks. First of all, since the vector a′ had a certain direction, the a′2 in (32.5) would be the square of the vector a′, that is, a′⋅a′, the length of the vector, squared. Secondly, the flux (32.2) was calculated using the retarded acceleration; that is, the acceleration at the time at which the energy now passing through the sphere was radiated. We might like to say that this energy was in fact liberated at this earlier time. This is not exactly true; it is only an approximate idea. The exact time when the energy is liberated cannot be defined precisely. All we can really calculate precisely is what happens in a complete motion, like an oscillation or something, where the acceleration finally ceases. Then what we find is that the total energy flux per cycle is the average of acceleration squared, for a complete cycle. This is what should really appear in (32.5). Or, if it is a motion with an acceleration that is initially and finally zero, then the total energy that has flown out is the time integral of (32.5).

To illustrate the consequences of formula (32.5) when we have an oscillating system, let us see what happens if the displacement x of the charge is oscillating so that the acceleration a is −ω2x0eiωt. The average of the acceleration squared over a cycle (remember that we have to be very careful when we square things that are written in complex notation—it really is the cosine, and the average of cos2 ωt is one-half) thus is

The formulas we are now discussing are relatively advanced and more or less modern; they date from the beginning of the twentieth century, and they are very famous. Because of their historical value, it is important for us to be able to read about them in older books. In fact, the older books also used a system of units different from our present mks system. However, all these complications can be straightened out in the final formulas dealing with electrons by the following rule: The quantity q2e/4πϵ0, where qe is the electronic charge (in coulombs), has, historically, been written as e2. It is very easy to calculate that e in the mks system is numerically equal to 1.5188×10−14, because we know that, numerically, qe=1.60206×10−19 and 1/4πϵ0=8.98748×109. Therefore, we shall often use the convenient abbreviation

If we use the above numerical value of e in the older formulas and treat them as though they were written in mks units, we will get the right numerical results. For example, the older form of (32.5) is P=2/3 e2a′2/c3. Again, the potential energy of a proton and an electron at distance r is q2e/4πϵ0r or e2/r, with e=1.5188×10−14 (mks).




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.