المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24
أثر التبدل المناخي على الزراعة Climatic Effects on Agriculture
2024-11-24
نماذج التبدل المناخي Climatic Change Models
2024-11-24
التربة المناسبة لزراعة الجزر
2024-11-24
نظرية زحزحة القارات وحركة الصفائح Plate Tectonic and Drifting Continents
2024-11-24



السرعة القصوى  
  
1125   11:31 صباحاً   التاريخ: 2023-02-11
المؤلف : راسل ستانارد
الكتاب أو المصدر : النسبية (مقدمة قصية جدا)
الجزء والصفحة : الفصل الأول (ص37 – ص39)
القسم : علم الفيزياء / الفيزياء الحديثة / النظرية النسبية / النظرية النسبية الخاصة /


أقرأ أيضاً
التاريخ: 2024-02-24 815
التاريخ: 25-4-2016 3898
التاريخ: 26-4-2016 3615
التاريخ: 2023-02-09 1269

رأينا كيف أنه كلما تحرك المرء بسرعة أكبر، يتباطأ الزمن. وإذا بلغت سرعة الضوء، سيتوقف بك الزمن. وهذا يثير التساؤل عما سيحدث إذا واصل المرء التحرك أسرع من هذا بحيث يتجاوز سرعة الضوء، ما الذي سيفعله هذا بالزمن؟ هل سيعود المرء بالزمن إلى الوراء؟ نأمل ألا يكون الحال كذلك؛ فمثل هذه الاحتمالية من شأنها أن تسبب إرباكا ما بعده إرباك. افترض – على سبيل المثال – أنك عدت بالزمن إلى الوراء، وبالمصادفة دهست جدتك بالسيارة، وذلك قبل أن تتاح لها فرصة أن تلد أمك. كيف لك أن توجد بينما أمك لم تولد من الأساس؟! لحسن الحظ ليس من الممكن أن يحدث هذا. فكما ذكرنا من قبل، لا شيء يمكنه الحركة بسرعة أكبر من سرعة الضوء. لكن لماذا؟

وفق قوانين الحركة لنيوتن، فإن الجسم ذا الكتلة m والسرعة v يملك زخما p يتحدد وفق التعبير الرياضي التالي:

p = mv

ولجعل الجسم يتحرك بسرعة أكبر، علينا بذل المزيد من القوة عليه. وفق قانون نيوتن الثاني للحركة، فإن القوة F تساوي نسبة التغير في زخم الجسم. وفي ضوء أن كتلة الجسمm  ثابتة، يتساوى هذا والقول بأن القوة تعادل الكتلة m مضروبة في نسبة التغير في العجلة (التسارع) a ومن ثم: السرعة، التي هي

F = ma

من هذه المعادلة نخلص إلى أننا لو دفعنا الجسم لمدة كافية وبالشدة الكافية، فستتزايد العجلة على نحو غير محدود، ولن تكون ثمة حدود للسرعة التي يمكن أن يصل إليها الجسم.

حيث أن هذا ليس الوضع في النسبية. فمثلما وجب علينا تعديل أفكارنا بشأن الزمان والطول، تتطلب منا النسبية أيضا أن نعيد تعريف مفهوم الزخم؛ ومن ثَم، يمكن كتابة التعبير الرياضي الخاص بالزخم على النحو التالي:

              

ربما لن يكون مدعاة للدهشة أن العنصر نفسه الذي ظهر في التعبيرين الرياضيين لكل من الإبطاء الزمني وتقلص الأطوال وتحديدا

 

ظهر هنا مجددا).العمليات الرياضية المستخدمة في اشتقاق هذه المعادلة — رغم كونها مباشرة — طويلة ومضجرة إلى حد ما بحيث يستعصي إدراجها هنا.)

كيف إذن يؤثر هذا على قانون نيوتن الثاني؟ إن فكرة القوة بوصفها نسبة التغير في الزخم لا تزال موجودة، لكن ضمن التعبير الرياضي الجديد الخاص بالزخم. هذا بدوره يعني أن الصياغة المحددة للقانون F = ma  لم تعد قابلة للتطبيق. فبينما كنا نقتصر في تعاملنا من قبل على نسبة التغير في السرعة v (أي العجلةa) فإننا الآن يجب أن نضع في اعتبارنا نسبة التغير الخاصة ب

 اذا كانت قيمة السرعة صغيرة نكون بصدد الموقف النيوتوني التقليدي. لكن لو أن سرعة الجسم v تقارب سرعة الضوء cعندئذ تقترب قيمة التعبير v2/c2 من الواحد الصحيح، ويقترب التعبير الرياضي أسفل علامة الجذر التربيعي من الصفر، ويصير الزخم كبيرا على نحو غير محدود؛ وبذا فإن القوة الثابتة لا تكاد تتسبب في أي زيادة في سرعة الجسم، رغم استمرارها في زيادة زخم الجسم بنسبة ثابتة؛ وبذا تصير سرعة الضوء الحد النهائي للسرعة؛ ومن ثم لا يمكن دفع أي جسم إلى التحرك بسرعة مساوية لسرعة الضوء.

هذا بدوره يعني أنه يستحيل على المرء أن يلحق بشعاع من الضوء. فإذا كان للمركبة الفضائية كشافات أضواء أمامية، فمهما حاول رائد الفضاء زيادة سرعة المركبة للحاق بالضوء المنبعث من كشافاتها، سيظل شعاع الضوء يسبق المركبة. في الواقع، أولى بذور فكرة النسبية راودت أينشتاين حني تفكر فيما سيكون عليه الحال عند محاولة اللحاق بشعاع من الضوء. لقد تصور في عقله موقفا تتسارع فيه حركة المرء بحيث يتحرك إلى جوار شعاع من الضوء، بحيث يبدو الشعاع من منظور وكأنه ساكن في مكانه (وذلك بالطريقة عينها التي تبدو بها السيارتان المتحركتان إحداهما إلى جوار الأخرى بالسرعة نفسها على الطريق وكأنهما ساكنتان إحداهما بالنسبة إلى الأخرى). حيث أن أينشتاين كان يعلم من واقع قوانين ماكسويل للكهرومغناطيسية أن الضوء — بوصفه شكلا من أشكال الإشعاع الكهرومغناطيسي — «لا بد» أن يُرى وهو يتحرك بسرعته المعروفة c بمعنى أنه ليس من الممكن أن يبدو ساكنا إن تحرك الضوء بسرعته الثابتة هو جزء لا يتجزأ من ماهية الضوء؛ إذن، ليس مسؤول المراقبة وحده هو من يرى الضوء المنطلق من كشافات الضوء الأمامية الخاصة بالمركبة وهو يتحرك بسرعة الضوء الثابتة نسبة إليه، بل سيرى رائد الفضاء هو الآخر الضوء وهو يبتعد عنه بالسرعة عينها. وهذا بغض النظر عن حقيقة أنه من منظور مسؤول المراقبة، فإن سرعة الشعاع نسبة إلى المركبة — والتي نحصل عليها بالطريقة المعتادة من خلال طرح سرعة المركبة من سرعة الضوء — أقل بكثير. وبهذا خلص أينشتاين إلى أن ثمة خطأ واضحا في الطريقة التي نتعامل بها مع عمليات إضافة وطرح السرعات. ونظرا لأن السرعة ما هي إلا المسافة المكانية مقسومة على الزمن، يستتبع ذلك على الفور أننا لو كنا مخطئين بشأن السرعات، فلا بد أننا مخطئون أيضا بشأن مفاهيمنا الأساسية عن المكان والزمان. ولقد رأينا بالفعل إلى أين قادنا هذا الإدراك: الإبطاء الزمني، وتقلص الأطوال، وفقدان التزامن بين الأحداث المنفصلة.

هل حقيقة أننا لا نستطيع التحرك بسرعة تضاهي سرعة الضوء تستبعد أي إمكانية للتحرك بسرعة تفوق سرعة الضوء؟ على وجه الدقة، كلا. فكل ما نقوله هو أنه من المستحيل أن نأخذ المادة التي نألفها ثم ندفعها للتحرك بسرعة تفوق سرعة الضوء. لكن هذا لا يستبعد تلك الإمكانية الخيالية إلى حد ما، والمتمثلة في وجود نوع ثان من المادة، تُخلَّق على سرعات تفوق سرعة الضوء، وتكون قادرة على التحرك فقط بسرعات تتراوح بين سرعة الضوء واللانهائية. هذه الجسيمات الافتراضية منحت الاسم «تاكيون». ومنذ بضع سنوات كانت هذه الجسيمات موضوع العديد من التخمينات. وقد ذُكر — على سبيل المثال — أن الراصدين المتكونة أجسامهم من مادة التاكيون سيعتقدون أن السرعات في عالم التاكيون يجب أن تكون أقل من سرعة الضوء، وأن نوع المادة الخاص بنا هو القادر على التحرك بسرعات تتراوح بين سرعة الضوء واللانهائية. لكن كفانا من هذا، فلا دليل إطلاقًا على وجود التاكيونات، وهي مجرد تخمينات لا أساس لها.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.