المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31


Percolation  
  
1036   03:50 مساءً   date: 17-5-2022
Author : Bollobás, B. and Riordan, O
Book or Source : Percolation. New York: Cambridge University Press, 2006.
Page and Part : ...


Read More
Date: 9-3-2022 1437
Date: 6-5-2022 1339
Date: 28-7-2016 1220

Percolation

Percolation, the fundamental notion at the heart of percolation theory, is a difficult idea to define precisely though it is quite easy to describe qualitatively.

From the narrowest perspective, the term percolation can be defined as a model of a porous medium; indeed, it is from this perspective that the study of percolation theory blossomed, and is typically agreed to be the fundamental physical situation that modern percolation theory attempts to address.

Likewise, it is not uncommon for the term percolation to describe the actual fluid flow within the random media or as the theoretical simulation of such a flow for a given simulated medium.

One of the difficulties underlying the formulation of a precise definition is that some authors choose to define the term relative to the machinery used in its study. For instance, some authors choose to define percolation to be the result of independently removing vertices or edges from some sort of graph (van der Hofstad 2010), a definition which is intimately connected to the fact that graph theory provides one piece of the basis framework for several models of today's discrete percolation theory.

In much the same way, it is not uncommon for the term to be defined as a probabilistic model which exhibits certain behavior, most notably a phase transition (Kesten 2006) or a critical phenomenon (Steif 2009); these two terms most often describe the more ubiquitous term percolation threshold, one of the fundamental probabilistic components of modern percolation theory. As such, this definition is similar to the graph-theoretic definition above in that it addresses another of the main tools-namely, probability theory-used to formalize both discrete and continuum percolation theory. Contrarily, however, some authors use this same terminology to define percolation theory rather than percolation itself (Christensen 2002).

To add to the ambiguity, the term percolation is often used to describe a system which percolates, i.e.,a system within which there exists an infinite connected component (van der Hofstad 2010). In instances of Bernoulli bond and/or site percolation, this notion can be made more precise by defining a probability P on the set of subgraphs of a connected, finite, locally finite multigraph Lambda designating the independent probability with which vertices/edges are considered "open." Under this construction, one says that a percolation occurs within Lambda if P(E)=1 where here, E is an event characterized by the existence of an infinite open cluster within Lambda (Bollobás and Riordan 2006). Analogues of this definition exist in branches of percolation theory other than bond/site theory as well, e.g.,the infinite clump terminology of the Boolean model and the graph-theoretic machinery underlying the random-connection model of continuum percolation theory. Clearly, this definition borrows from both the graph theoretic and probabilistic definitions of percolation.

The term percolation is often prefaced by any of a number of context-specific qualifiers, e.g., AB, bond, bootstrap, continuum, dependent, first-passage, inhomogeneous, long-range, mixed, oriented, site, etc., to indicate additional assumptions made on the underlying system.


REFERENCES

Bollobás, B. and Riordan, O. Percolation. New York: Cambridge University Press, 2006.

Christensen, K. "Percolation Theory." 2002. http://www.mit.edu/~levitov/8.334/notes/percol_notes.pdf.

Grimmett, G. Percolation, 2nd ed. Berlin: Springer-Verlag, 1999.Kesten, H. "What Is Percolation?" Notices Amer. Math. Soc. 53, 572-573, 2006.

Steif, J. E. "A Mini Course on Percolation Theory." 2009. http://www.math.chalmers.se/~steif/perc.pdf.

Van der Hofstad, R. "Percolation and Random Graphs." Ch. 6 in New Perspectives in Stochastic Geometry. Oxford, England: Oxford University Press, pp. 173-247, 2010.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.