Read More
Date: 10-4-2022
![]()
Date: 6-8-2016
![]()
Date: 6-5-2022
![]() |
A pair of vertices of a graph
is called an
-critical pair if
, where
denotes the graph obtained by adding the edge
to
and
is the clique number of
. The
-critical pairs are never edges in
. A maximal stable set
of
is called a forced color class of
if
meets every
-clique of
, and
-critical pairs within
form a connected graph.
In 1993, G. Bacsó conjectured that if is a uniquely
-colorable perfect graph, then
has at least one forced color class. This conjecture is called the bold conjecture, and implies the strong perfect graph theorem. However, a counterexample of the conjecture was subsequently found by Sakuma (1997).
Sakuma, T. "A Counterexample to the Bold Conjecture." J. Graph Th. 25, 165-168, 1997.
Sebő, A. "On Critical Edges in Minimal Perfect Graphs." J. Combin. Th. B 67, 62-85, 1996.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|