المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

علي وصي الرسول بالحق
12-02-2015
الوصف النباتي للبطاطا
7-3-2017
ذم إيثار المال
28-4-2017
مقاضاة المنظمة وحصاناتها
8-3-2017
الاخلاق العامة في المجتمع الجاهليّ العربي
2-4-2017
حسن بن آقا بزرگ بن علي أصغر البجنوردي.
26-7-2016

Euler Graph  
  
1282   05:04 مساءً   date: 27-2-2022
Author : Buekenhout, F. (Ed.)
Book or Source : Handbook of Incidence Geometry: Building and Foundations. Amsterdam, Netherlands: North-Holland, 1995.
Page and Part : ...


Read More
Date: 10-3-2022 1451
Date: 28-7-2016 1057
Date: 8-5-2022 1353

Euler Graph

The term "Euler graph" is sometimes used to denote a graph for which all vertices are of even degree (e.g., Seshu and Reed 1961). Note that this definition is different from that of an Eulerian graph, though the two are sometimes used interchangeably and are the same for connected graphs.

EulerGraphs

The numbers of Euler graphs with n=1, 2, ... nodes are 1, 1, 2, 3, 7, 16, 54, 243, 243, 2038, ... (OEIS A002854; Robinson 1969; Mallows and Sloane 1975; Buekenhout 1995, p. 881; Colbourn and Dinitz 1996, p. 687), the first few of which are illustrated above. There is an explicit formula giving these numbers.

EulerNotEulerian

There are more Euler graphs than Eulerian graphs since there exist disconnected graphs having multiple disjoint cycles with each node even but for which no single cycle passes through all edges. The numbers of Euler-but-not-Eulerian graphs on n=1, 2, ... nodes are 0, 0, 0, 0, 0, 1, 2, 7, 20, 76, 334, 2498, ... (OEIS A189771), the first few of which are illustrated above.


REFERENCES

Buekenhout, F. (Ed.). Handbook of Incidence Geometry: Building and Foundations. Amsterdam, Netherlands: North-Holland, 1995.

Colbourn, C. J. and Dinitz, J. H. (Eds.). CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, 1996.

Mallows, C. L. and Sloane, N. J. A. "Two-Graphs, Switching Classes, and Euler Graphs are Equal in Number." SIAM J. Appl. Math. 28, 876-880, 1975.

Robinson, R. W. "Enumeration of Euler Graphs." In Proof Techniques in Graph Theory (Ed. F. Harary). New York: Academic Press, pp. 147-153, 1969.

Seshu, S. and Reed, M. B. Linear Graphs and Electrical Networks. Reading, MA: Addison-Wesley, 1961.Sloane, N. J. A. Sequences A002854/M0846 and A189771 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.