Read More
Date: 29-12-2021
1081
Date: 2-1-2022
1326
Date: 11-1-2022
965
|
Two totally ordered sets and are order isomorphic iff there is a bijection from to such that for all ,
(Ciesielski 1997, p. 38). In other words, and are equipollent ("the same size") and there is an order preserving mapping between the two.
Dauben (1990) and Suppes (1972) call this property "similar." The definition works equally well on partially ordered sets.
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Mansour, T. "Permutations Avoiding a Pattern from and at Least Two Patterns from ." 31 Jul 2000. http://arxiv.org/abs/math.CO/0007194.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|