Read More
Date: 26-12-2021
652
Date: 14-2-2017
1120
Date: 14-2-2017
1782
|
Let and be totally ordered sets. Let be the Cartesian product and define order as follows. For any and ,
1. If , then ,
2. If , then and compare the same way as (i.e., lexicographical order)
(Ciesielski 1997, p. 48; Rubin 1967; Suppes 1972). However, Dauben (1990, p. 104) and Moore (1982, p. 40) define multiplication in the reverse order.
Like addition, multiplication is not commutative, but it is associative,
(1) |
An inductive definition for ordinal multiplication states that for any ordinal number ,
(2) |
(3) |
If is a limit ordinal, then is the least ordinal greater than any ordinal in the set (Suppes 1972, p. 212).
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مستشفى العتبة العباسية الميداني في سوريا يقدّم خدماته لنحو 1500 نازح لبناني يوميًا
|
|
|