المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31


Functions-Inverse Functions and Permutations  
  
1779   03:10 مساءً   date: 14-2-2017
Author : Ivo Düntsch and Günther Gediga
Book or Source : Sets, Relations, Functions
Page and Part : 42-44


Read More
Date: 16-1-2022 1626
Date: 16-1-2022 1767
Date: 23-12-2021 792

Recall Definition 1.3in( One–one, Onto, and Bijective Functions)  of the converse R˘ of a relation R on a set A;

we have obtained the converse R˘ of R by turning around all the arrows, resp. the order of the components. This was always possible, since a relation was just a set of ordered pairs with no other conditions attached.

For a function, reversing the arrows need not result in another function: Consider the examples in Figure 1.1in ( One–one, Onto, and Bijective Functions)  . In the surjective function, turning around the arrows does not result in a function, because there are two arrows leaving e.

Furthermore, you will notice that applying f to an element of dom f and then applying g to the result gets us right back to where we started, in other words,  g(f(a)) = a. This property is decisive, and leads to the following

 

Definition 1.1. Let f : A → B and g : B → A be functions; g is called the inverse of f, denoted by f−1 , if g(f(x)) = x for all x ∈ A.

In other words, g is an inverse of f if and only if g ◦ f = idA. The examples above suggest that a function which is not bijective cannot have an inverse. The following Theorem shows that this observation is correct.

Theorem 1.1. f : A → B has an inverse if and only if f is injective.

Proof. “⇒”: Suppose that g : B → A is an inverse of f; we have to show that f is one–one. Let x,y ∈ A and f(x) = f(y); then, g(f(x)) = g(f(y)). Since g is an inverse of f, we have g(f(x)) = x and g(f(y)) = y, which implies x = y.

“⇐”: Suppose that f : A → B is one–one; for each y ∈ B we distinguish two cases:

1. y ∈ ran f: Then there is exactly one x ∈ A such that f(x) = y, since f is one–one. Now set g(y) = x.

2. x ∉ran f: Choose an arbitrary element yx of A, and set g(y) = yx. So,  dom g = B, codom g = A, and, since, f is one–one, each element of B is assigned exactly one element of A; hence, g : B → A is a function.

Finally, let x ∈ A; by definition of g we have g(f(x)) = x, which shows that g is an inverse of f.

Note that in case f is one–one but not onto it has more than one inverse function,  since g is defined arbitrarily for every x ∈ B which is not in the range of f. Those elements of the codomain which are not in the range of f are in a way immaterial to the assignment f; from previous examples we know that a one–one function can be made bijective by restricting its codomain to the range. If f is bijective then there is only one inverse function:

 

Theorem 1.2. If f : A → B is bijective, then f has unique inverse g : B → A;  furthermore, f is an inverse to g.

Proof. Since f is bijective, it is one–one, and thus it has an inverse g : B → A.

Suppose that h : B → A is also an inverse to f, i.e. we have h(f(x)) = x for every x ∈ A. Since in particular f is onto, for every y ∈ B there is an x ∈ A such that f(x) = y; now, since g is an inverse to f, we have g(y) = g(f(x)) = x,  and since h is also an inverse to f, we have h(y) = h(f(x)) = x. It follows that g(y) = h(y) for all y ∈ B, which shows that g = h.

For the second part we have to show that f(g(y)) = y for all y B. Thus, let y ∈ B.

Since f is onto, there exists an x ∈ A such that f(x) = y. Thus,

                f(g(y)) = f(g(f(x))) = f(x),

since g is an inverse of f, and hence, g(f(x)) = x.

Let us briefly look at bijective functions f : A → A, where A is a finite set.

 

Definition 1.2. Let A = {1, 2, 3,. . ., n}, and f : A → A be a bijective function;

then f is called a permutation on n.

The reason for calling these function permutations is that they arrange (i.e. permute)  the elements of Ain a different order. Amore general definition of a permutation would allow as domain arbitrary finite sets. For example, if you have n books arranged on a shelf and you put them in a different order, you have in fact performed a permutation of n objects.

If n is small there is a convenient way of picturing f; for example if A = {1, 2, 3, 4, 5}, and f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 2, f(5) = 4, then we can write

Observe that every element of A appears exactly once in each of the two lines,  since f is bijective. In general, if A = {1, 2,. . ., n}, and f(1) = a1,f(2) = a2,. . ., f(n) = an, we can list the function by

It is easy to find the inverse of a permutation by just looking from bottom to top in the given list. Let us go back to the example above: The inverse g of f looks like this:

This method of representing a permutation is also useful for obtaining the composition;  look at the following two permutations of A:

By going through the tables, we find that for h = g ◦ f,

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.