Read More
Date: 7-12-2021
![]()
Date: 7-12-2021
![]()
Date: 10-12-2021
![]() |
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial in for the function
. Differentiating the identity
![]() |
(1) |
times gives
![]() |
(2) |
Plugging in gives
. From the Maclaurin series of
with
, we have
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where is a Bernoulli number, and substituting these values of
and
into Darboux's formula gives
![]() |
(7) |
which is the Euler-Maclaurin integration formula (Whittaker and Watson 1990, p. 128). It holds when the function is analytic in the integration region
In certain cases, the last term tends to 0 as , and an infinite series can then be obtained for
. In such cases, sums may be converted to integrals by inverting the formula to obtain the Euler-Maclaurin sum formula
![]() |
(8) |
which, when expanded, gives
![]() |
(9) |
(Abramowitz and Stegun 1972, p. 16). The Euler-Maclaurin sum formula is implemented in the Wolfram Language as the function NSum with option Method -> "EulerMaclaurin".
The second Euler-Maclaurin integration formula is used when is tabulated at
values
,
, ...,
:
![]() |
(10) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 16 and 806, 1972.
Apostol, T. M. "An Elementary View of Euler's Summation Formula." Amer. Math. Monthly 106, 409-418, 1999.
Arfken, G. "Bernoulli Numbers, Euler-Maclaurin Formula." §5.9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 327-338, 1985.
Borwein, J. M.; Borwein, P. B.; and Dilcher, K. "Pi, Euler Numbers, and Asymptotic Expansions." Amer. Math. Monthly 96, 681-687, 1989.
Euler, L. Comm. Acad. Sci. Imp. Petrop. 6, 68, 1738.
Havil, J. "Euler-Maclaurin Summation." §10.2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 85-86, 2003.
Knopp, K. Theory and Application of Infinite Series. New York: Dover, 1990.
Maclaurin, C. Treatise of Fluxions. Edinburgh, p. 672, 1742.
Vardi, I. "The Euler-Maclaurin Formula." §8.3 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 159-163, 1991.
Whittaker, E. T. and Robinson, G. "The Euler-Maclaurin Formula." §67 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 134-136, 1967.
Whittaker, E. T. and Watson, G. N. "The Euler-Maclaurin Expansion." §7.21 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 127-128, 1990.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|