المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

السيدة زينب في مجلس ابن زياد
7-12-2017
جريمة السرقة الداخلية
21-3-2016
مصير الذين لا يعتبرون
8-10-2014
الظروف التي تساعد على زيادة جريان المياه السطحية - ظروف مناخية ملائمة
5-9-2019
تعريف المرحلة السابقة على التعاقد
14-3-2017
الإعلام الجديد تربية
27-1-2023

Shovelton,s Rule  
  
582   07:52 مساءً   date: 8-12-2021
Author : King, A. E
Book or Source : "Approximate Integration. Note on Quadrature Formulae: Their Construction and Application to Actuarial Functions." Trans. Faculty of Actuaries 9,
Page and Part : ...


Read More
Date: 2-12-2021 309
Date: 7-12-2021 537
Date: 10-12-2021 616

Shovelton's Rule

Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1)f_2=f(x_2), ..., f_(11)=f(x_(11)). Then Shovelton's rule approximating the integral of f(x) is given by the Newton-Cotes-like formula

 int_(x_1)^(x_(11))f(x)dx=5/(126)h[8(f_1+f_(11))+35(f_2+f_4+f_8+f_(10)) 
 +15(f_3+f_5+f_7+f_9)+36f_6].

REFERENCES:

King, A. E. "Approximate Integration. Note on Quadrature Formulae: Their Construction and Application to ActuHelvetica Functions." Trans. Faculty of Actuaries 9, 218-231, 1923.

Sheppard, W. F. "Some Quadrature-Formulæ." Proc. London Math. Soc. 32, 258-277, 1900.

Whittaker, E. T. and Robinson, G. The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, p. 151, 1967.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.