المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Birkhoff,s Inequality  
  
899   03:07 مساءً   date: 6-10-2021
Author : Jentzsch, R
Book or Source : "Über Integralgleichungen mit positivem Kern." J. reine angew. Math. 141
Page and Part : ...


Read More
Date: 6-1-2016 1311
Date: 5-11-2021 965
Date: 16-8-2021 1114

Birkhoff's Inequality

In homogeneous coordinates, the first positive quadrant joins (0,1) with (1,0) by "points" (f_1,f_2), and is mapped onto the hyperbolic line -infty<u<+infty by the correspondence Ln(f_2/f_1)=u. Now define

 theta(f,g)=|Lnv-Lnu|=|Ln(f_2g_1/f_1g_2)|.

(1)

Let P be any bounded linear transformation of a Banach space B that maps a closed convex cone C of B onto itself. Then the C-norm N(P;C) of P is defined by

 N(P;C)=sup(theta(fP,gP;C))/(theta(f,g;C))

(2)

for pairs f,g in C with finite theta(f,g;C). Birkhoff's inequality then states that if the transform CP of C under P has finite diameter Delta under theta(f,g;C), then

 N(P;C)=tanh(1/4Delta)<1

(3)

(Birkhoff 1957).


REFERENCES:

Birkhoff, G. "Extensions of Jentzsch's Theorem." Trans. Amer. Math. Soc. 85, 219-227, 1957.

Jentzsch, R. "Über Integralgleichungen mit positivem Kern." J. reine angew. Math. 141, 235-244, 1912.

Schmeidler, W. Integralgleichungen mit Anwendungen in Physik und Technik, Vol. 1. Lineare Integralgleichungen. Leipzig, Germany: Geest & Portig, p. 298, 1955.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.