المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الصورة الشعرية
2025-04-08
اسم المفعول
2025-04-08
تفريعات / القسم السادس عشر
2025-04-08
تفريعات / القسم الخامس عشر
2025-04-08
تفريعات / القسم الرابع عشر
2025-04-08
معنى قوله تعالى : هُوَ الَّذِي جَعَلَ الشَّمْسَ ضِيَاءً وَالْقَمَرَ نُورًا
2025-04-08

توزيع كمية التساقط على قارة افتراضية Precipitations on a Hypothetical Continent
2024-12-05
تفسير الآيات [195-198] من سورة آل‏ عمران
12-06-2015
Relationship Between Neutron Flux and Reactor Power
11-4-2017
أبو جعفر الرؤاسي و معاذ الهراء
27-03-2015
معنى كلمة درس
7-06-2015
Differential Operator
15-5-2018

Pass Equivalent  
  
1868   04:34 مساءً   date: 14-6-2021
Author : Adams, C. C.
Book or Source : The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
Page and Part : pp. 223-228


Read More
Date: 12-6-2021 2131
Date: 26-9-2016 1515
Date: 9-8-2021 1482

Pass Equivalent

Two knots are pass equivalent if there exists a sequence of pass moves taking one to the other. Every knot is either pass equivalent to the unknot or trefoil knot. These two knots are not pass equivalent to each other, but the enantiomers of the trefoil knot are pass equivalent. A knot has Arf invariant 0 if the knot is pass equivalent to the unknot and 1 if it is pass equivalent to the trefoil knot.


REFERENCES:

Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 223-228, 1994.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.