Read More
Date: 16-9-2020
501
Date: 16-11-2020
2172
Date: 30-11-2020
617
|
Given the sum-of-factorials function
is the smallest integer for prime such that is divisible by . If for all , then never divides any sum for all . Therefore, the values do not exist for 2, 5, 7, 13, 19, 31, ... (OEIS A056985).
The function is defined for , 11, 17, 23, 29, 37, 41, 43, 53, 67, 73, 79, 97, ... (OEIS A056983), with corresponding values 2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 20, 7, 57, 6, ... (OEIS A056985).
REFERENCES:
Ashbacher, C. "Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Math. Informatics Quart. 7, 114-116, 1997.
"Functions in Number Theory." https://www.gallup.unm.edu/~smarandache/FUNCT1.TXT.
Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Smarandache Notions J. 7, 52-53, 1996.
Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.
Sloane, N. J. A. Sequences A056983, A056984, and A056985 in "The On-Line Encyclopedia of Integer Sequences."
|
|
مخاطر عدم علاج ارتفاع ضغط الدم
|
|
|
|
|
اختراق جديد في علاج سرطان البروستات العدواني
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|