المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

نظرة سريعة عن حياة العسكري "عليه السّلام"
31-5-2022
MASS IS A SCALAR
12-9-2020
خصاص أموال الدولة
2024-05-22
التوبة ومعاودة العصيان
2024-06-12
الارادة
2-9-2016
تحليل القوائم المالية بالنسب المالية Financial Ratio Analysis
18-5-2022

Amicable Pair  
  
1834   04:25 مساءً   date: 22-11-2020
Author : Alanen, J.; Ore, Ø.; and Stemple, J.
Book or Source : "Systematic Computations on Amicable Numbers." Math. Comput. 21
Page and Part : ...


Read More
Date: 16-10-2019 543
Date: 16-2-2020 889
Date: 28-10-2020 1654

Amicable Pair

An amicable pair (m,n) consists of two integers m,n for which the sum of proper divisors (the divisors excluding the number itself) of one number equals the other. Amicable pairs are occasionally called friendly pairs (Hoffman 1998, p. 45), although this nomenclature is to be discouraged since the numbers more commonly known as friendly pairs are defined by a different, albeit related, criterion. Symbolically, amicable pairs satisfy

s(m) = n

(1)

s(n) = m,

(2)

where

 s(n)=sigma(n)-n

(3)

is the restricted divisor function. Equivalently, an amicable pair (m,n) satisfies

 sigma(m)=sigma(n)=s(m)+s(n)=m+n,

(4)

where sigma(n) is the divisor function. The smallest amicable pair is (220, 284) which has factorizations

220 = 11·5·2^2

(5)

284 = 71·2^2

(6)

giving restricted divisor functions

s(220) = sum{1,2,4,5,10,11,20,22,44,55,110}

(7)

= 284

(8)

s(284) = sum{1,2,4,71,142}

(9)

= 220.

(10)

The quantity

 sigma(m)=sigma(n)=s(m)+s(n),

(11)

in this case, 220+284=504, is called the pair sum. The first few amicable pairs are (220, 284), (1184, 1210), (2620, 2924) (5020, 5564), (6232, 6368), (10744, 10856), (12285, 14595), (17296, 18416), (63020, 76084), ... (OEIS A002025 and A002046). An exhaustive tabulation is maintained by D. Moews.

In 1636, Fermat found the pair (17296, 18416) and in 1638, Descartes found (9363584, 9437056), although these results were actually rediscoveries of numbers known to Arab mathematicians. By 1747, Euler had found 30 pairs, a number which he later extended to 60. In 1866, 16-year old B. Nicolò I. Paganini found the small amicable pair (1184, 1210) which had eluded his more illustrious predecessors (Paganini 1866-1867; Dickson 2005, p. 47). There were 390 known amicable pairs as of 1946 (Escott 1946). There are a total of 236 amicable pairs below 10^8 (Cohen 1970), 1427 below 10^(10) (te Riele 1986), 3340 less than 10^(11) (Moews and Moews 1993ab), 4316 less than 2.01×10^(11) (Moews and Moews 1996), and 5001 less than  approx 3.06×10^(11) (Moews and Moews 1996).

Rules for producing amicable pairs include the Thâbit ibn Kurrah rule rediscovered by Fermat and Descartes and extended by Euler to Euler's rule. A further extension not previously noticed was discovered by Borho (1972).

Pomerance (1981) has proved that

 [amicable numbers <=n]<ne^(-[ln(n)]^(1/3))

(12)

for large enough n (Guy 1994). No nonfinite lower bound has been proven.

Let an amicable pair be denoted (m,n), and take m<n(m,n) is called a regular amicable pair of type (i,j) if

 (m,n)=(gM,gN),

(13)

where g=GCD(m,n) is the greatest common divisor,

 GCD(g,M)=GCD(g,N)=1,

(14)

M and N are squarefree, then the number of prime factors of M and N are i and j. Pairs which are not regular are called irregular or exotic (te Riele 1986). There are no regular pairs of type (1,j) for j>=1. If m=0 (mod 6) and

 n=sigma(m)-m

(15)

is even, then (m,n) cannot be an amicable pair (Lee 1969). The minimal and maximal values of m/n found by te Riele (1986) were

 938304290/1344480478=0.697893577...

(16)

and

 4000783984/4001351168=0.9998582518....

(17)

te Riele (1986) also found 37 pairs of amicable pairs having the same pair sum. The first such pair is (609928, 686072) and (643336, 652664), which has the pair sum

 sigma(m)=sigma(n)=m+n=1296000.

(18)

te Riele (1986) found no amicable n-tuples having the same pair sum for n>2. However, Moews and Moews found a triple in 1993, and te Riele found a quadruple in 1995. In November 1997, a quintuple and sextuple were discovered. The sextuple is (1953433861918, 2216492794082), (1968039941816, 2201886714184), (1981957651366, 2187969004634), (1993501042130, 2176425613870), (2046897812505, 2123028843495), (2068113162038, 2101813493962), all having pair sum 4169926656000. Amazingly, the sextuple is smaller than any known quadruple or quintuple, and is likely smaller than any quintuple.

The earliest known odd amicable numbers all were divisible by 3. This led Bratley and McKay (1968) to conjecture that there are no amicable pairs coprime to 6 (Guy 1994, p. 56). However, Battiato and Borho (1988) found a counterexample, and now many amicable pairs are known which are not divisible by 6 (Pedersen). The smallest known example of this kind is the amicable pair (42262694537514864075544955198125, 42405817271188606697466971841875), each number of which has 32 digits.

A search was then begun for amicable pairs coprime to 30. The first example was found by Y. Kohmoto in 1997, consisting of a pair of numbers each having 193 digits (Pedersen). Kohmoto subsequently found two other examples, and te Riele and Pedersen used two of Kohmoto's examples to calculated 243 type-(3,2) pairs coprime to 30 by means of a method which generates type-(3,2) pairs from a type-(2,1) pairs.

No amicable pairs which are coprime to 2·3·5·7=210 are currently known.

The following table summarizes the largest known amicable pairs discovered in recent years. The largest of these is obtained by defining

a = 2·5·11

(19)

S = 37·173·409·461·2136109·2578171801921099·68340174428454377539

(20)

p = 925616938247297545037380170207625962997960453645121

(21)

q = 210958430218054117679018601985059107680988707437025081922673599999

(22)

q_1 = (p+q)p^(235)-1

(23)

q_2 = (p-S)p^(235)-1,

(24)

then pqq_1 and q_2 are all primes, and the numbers

n_1 = aSp^(235)q_1

(25)

n_2 = aqp^(235)q_2

(26)

are an amicable pair, with each member having 24073 decimal digits (Jobling 2005).

digits date reference
4829 Oct. 4, 1997 M. García
8684 Jun. 6, 2003 Jobling and Walker 2003
16563 May 12, 2004 Walker et al. 2004
17326 May 12, 2004 Walker et al. 2004
24073 Mar. 10, 2005 Jobling 2005

Amicable pairs in Gaussian integers also exist, for example

s(8008+3960i) = 4232-8280i

(27)

s(4232-8280i) = 8008+3960i

(28)

and

s(-1105+1020i) = -2639-1228i

(29)

s(-2639-1228i) = -1105+1020i

(30)

(T. D. Noe, pers. comm.).


REFERENCES:

Alanen, J.; Ore, Ø.; and Stemple, J. "Systematic Computations on Amicable Numbers." Math. Comput. 21, 242-245, 1967.

Battiato, S. and Borho, W. "Are there Odd Amicable Numbers not Divisible by Three?" Math. Comput. 50, 633-637, 1988.

Borho, W. "On Thabit ibn Kurrah's Formula for Amicable Numbers." Math. Comput. 26, 571-578, 1972.

Borho, W. "Some Large Primes and Amicable Numbers." Math. Comput. 36, 303-304, 1981.

Borho, W. "Befreundete Zahlen: Ein zweitausend Jahre altes Thema der elementaren Zahlentheorie." In Mathematische Miniaturen 1: Lebendige Zahlen: Fünf Exkursionen. Basel, Switzerland: Birkhäuser, pp. 5-38, 1981.

Borho, W. and Hoffmann, H. "Breeding Amicable Numbers in Abundance." Math. Comput. 46, 281-293, 1986.

Bratley, P.; Lunnon, F.; and McKay, J. "Amicable Numbers and Their Distribution." Math. Comput. 24, 431-432, 1970.

Bratley, P. and McKay, J. "More Amicable Numbers." Math. Comput. 22, 677-678, 1968.

Cohen, H. "On Amicable and Sociable Numbers." Math. Comput. 24, 423-429, 1970.

Costello, P. "Amicable Pairs of Euler's First Form." J. Rec. Math. 10, 183-189, 1977-1978.

Costello, P. "Amicable Pairs of the Form (i,1)." Math. Comput. 56, 859-865, 1991.

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 38-50, 2005.

Dubner, H. "New Amicable Pair Record." Oct. 14, 1997. https://listserv.nodak.edu/scripts/wa.exe?A2=ind9710&L=NMBRTHRY&F=&S=&P=695.

Erdős, P. "On Amicable Numbers." Publ. Math. Debrecen 4, 108-111, 1955-1956.

Erdős, P. "On Asymptotic Properties of Aliquot Sequences." Math. Comput. 30, 641-645, 1976.

Escott, E. B. E. "Amicable Numbers." Scripta Math. 12, 61-72, 1946.

García, M. "New Amicable Pairs." Scripta Math. 23, 167-171, 1957.

Gardner, M. "Perfect, Amicable, Sociable." Ch. 12 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 160-171, 1978.

Guy, R. K. "Amicable Numbers." §B4 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 55-59, 1994.

Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.

Jobling, P. "Large Amicable Pairs." Jun. 6, 2004. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0306&L=nmbrthry&P=R97&D=0.

Jobling, P. "A New Largest Known Amicable Pair." Mar. 10, 2005. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0503&L=nmbrthry&F=&S=&P=552.

Lee, E. J. "Amicable Numbers and the Bilinear Diophantine Equation." Math. Comput. 22, 181-197, 1968.

Lee, E. J. "On Divisibility of the Sums of Even Amicable Pairs." Math. Comput. 23, 545-548, 1969.

Lee, E. J. and Madachy, J. S. "The History and Discovery of Amicable Numbers, I." J. Rec. Math. 5, 77-93, 1972.

Lee, E. J. and Madachy, J. S. "The History and Discovery of Amicable Numbers, II." J. Rec. Math. 5, 153-173, 1972.

Lee, E. J. and Madachy, J. S. "The History and Discovery of Amicable Numbers, III." J. Rec. Math. 5, 231-249, 1972.

Lee, E. J. and Madachy, J. S. Errata to "The History and Discovery of Amicable Numbers, I-III." J. Rec. Math. 6, 53, 164, and 229, 1973.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 145 and 155-156, 1979.

Moews, D. and Moews, P. C. "A Search for Aliquot Cycles and Amicable Pairs." Math. Comput. 61, 935-938, 1993a.

Moews, D. and Moews, P. C. "A List of Amicable Pairs Below 2.01×10^(11)." Rev. Jan. 8, 1993b. https://xraysgi.ims.uconn.edu:8080/amicable.txt.

Moews, D. and Moews, P. C. "A List of the First 5001 Amicable Pairs." Rev. Jan. 7, 1996. https://xraysgi.ims.uconn.edu:8080/amicable2.txt.

Ore, Ø. Number Theory and Its History. New York: Dover, pp. 96-100, 1988.

Paganini, B. N. I. Atti della R. Accad. Sc. Torino 2, 362, 1866-1867.

Pedersen, J. M. "Known Amicable Pairs." https://amicable.homepage.dk/knwnc2.htm

Pedersen, J. M. "Various Amicable Pair Lists and Statistics." https://amicable.homepage.dk/apstat.htm

Pomerance, C. "On the Distribution of Amicable Numbers." J. reine angew. Math. 293/294, 217-222, 1977.

Pomerance, C. "On the Distribution of Amicable Numbers, II." J. reine angew. Math. 325, 182-188, 1981.

Root, S. Item 61 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 23, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item61.

Sloane, N. J. A. Sequences A002025/M5414 and A002046/M5435 in "The On-Line Encyclopedia of Integer Sequences."

Souissi, M. Un Texte Manuscrit d'Ibn Al-Bannā' Al-Marrakusi sur les Nombres Parfaits, Abondants, Deficients, et Amiables. Karachi, Pakistan: Hamdard Nat. Found., 1975.

Speciner, M. Item 62 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 24, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item62.

te Riele, H. J. J. "Four Large Amicable Pairs." Math. Comput. 28, 309-312, 1974.

te Riele, H. J. J. "On Generating New Amicable Pairs from Given Amicable Pairs." Math. Comput. 42, 219-223, 1984.

te Riele, H. J. J. "Computation of All the Amicable Pairs Below 10^(10)." Math. Comput. 47, 361-368 and S9-S35, 1986.

te Riele, H. J. J.; Borho, W.; Battiato, S.; Hoffmann, H.; and Lee, E. J. "Table of Amicable Pairs Between 10^(10) and 10^(52)." Centrum voor Wiskunde en Informatica, Note NM-N8603. Amsterdam: Stichting Math. Centrum, 1986.

te Riele, H. J. J. "A New Method for Finding Amicable Pairs." In Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics (Vancouver, BC, August 9-13, 1993) (Ed. W. Gautschi). Providence, RI: Amer. Math. Soc., pp. 577-581, 1994.

Walker, A. "New Large Amicable Pairs." May 12, 2004. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0405&L=nmbrthry&F=&S=&P=1043.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.