Read More
Date: 6-1-2020
![]()
Date: 21-3-2020
![]()
Date: 10-3-2020
![]() |
A sequence of numbers is complete if every positive integer
is the sum of some subsequence of
, i.e., there exist
or 1 such that
![]() |
(Honsberger 1985, pp. 123-126). The Fibonacci numbers are complete. In fact, dropping one number still leaves a complete sequence, although dropping two numbers does not (Honsberger 1985, pp. 123 and 126). The sequence of primes with the element prepended,
![]() |
is complete, even if any number of primes each are dropped, as long as the dropped terms do not include two consecutive primes (Honsberger 1985, pp. 127-128). This is a consequence of Bertrand's postulate.
REFERENCES:
Brown, J. L. Jr. "Unique Representations of Integers as Sums of Distinct Lucas Numbers." Fib. Quart. 7, 243-252, 1969.
Hoggatt, V. E. Jr.; Cox, N.; and Bicknell, M. "A Primer for Fibonacci Numbers. XII." Fib. Quart. 11, 317-331, 1973.
Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|