المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

أصالة الحقيقة
9-9-2016
ماهي نظم الحلب الالي؟
18-1-2017
نشاطات المنظمات الدولية حول النانو تكنولوجي
2023-08-06
تقويم البيانات السكانية
2024-06-30
الإمام المهدي أحمد بن يحيى بن المرتضى بن أحمد بن المرتضى
20-9-2020
الفقر والغنى من النظرة الاخلاقية
22-2-2018

RSA Number  
  
833   05:13 مساءً   date: 29-8-2020
Author : Aoki, K.; Kida, Y.; Shimoyama, T.; and Ueda, H.
Book or Source : "GNFS Factoring Statistics of RSA-100, 110, ..., 150." April 16, 2004. https://eprint.iacr.org/2004/095.pdf.
Page and Part : ...


Read More
Date: 14-3-2020 768
Date: 22-9-2020 654
Date: 17-11-2019 651

RSA Number

RSA numbers are difficult to-factor composite numbers having exactly two prime factors (i.e., so-called semiprimes) that were listed in the Factoring Challenge of RSA Security®--a challenge that is now withdrawn and no longer active.

While RSA numbers are much smaller than the largest known primes, their factorization is significant because of the curious property of numbers that proving or disproving a number to be prime ("primality testing") seems to be much easier than actually identifying the factors of a number ("prime factorization"). Thus, while it is trivial to multiply two large numbers p and q together, it can be extremely difficult to determine the factors if only their product pq is given. With some ingenuity, this property can be used to create practical and efficient encryption systems for electronic data.

RSA Laboratories sponsored the RSA Factoring Challenge to encourage research into computational number theory and the practical difficulty of factoring large integers, and because it can be helpful for users of the RSA encryption public-key cryptography algorithm for choosing suitable key lengths for an appropriate level of security.

RSA numbers were originally spaced at intervals of 10 decimal digits between 100 and 500 digits, and prizes were awarded according to a complicated formula. These original numbers were named according to the number of decimal digits, so RSA-100 was a hundred-digit number. As computers and algorithms became faster, the unfactored challenge numbers were removed from the prize list and replaced with a set of numbers with fixed cash prizes. At this point, the naming convention was also changed so that the trailing number would indicate the number of digits in the binary representation of the number. Hence, RSA-640 has 640 binary digits, which translates to 193 digits in decimal.

RSA numbers received widespread attention when a 129-digit number known as RSA-129 was used by R. Rivest, A. Shamir, and L. Adleman to publish one of the first public-key messages together with a $100 reward for the message's decryption (Gardner 1977). Despite widespread belief at the time that the message encoded by RSA-129 would take millions of years to break, it was factored in 1994 using a distributed computation which harnessed networked computers spread around the globe performing a multiple polynomial quadratic sieve (Leutwyler 1994). The result of all the concentrated number crunching was decryption of the encoded message to yield the profound plaintext message "The magic words are squeamish ossifrage." (For the benefit of non-ornithologists, an ossifrage is a rare predatory vulture found in the mountains of Europe.) The corresponding factorization (into a 64-digit number and a 65-digit number) is

 114381625757888867669235779976146612010218296... 
...7212423625625618429357069352457338978305971... 
...23563958705058989075147599290026879543541 
=3490529510847650949147849619903898133417764... 
...638493387843990820577×3276913299326... 
...6709549961988190834461413177642967992... 
...942539798288533

(Leutwyler 1994, Cipra 1996).

RSA-129 is referred to in the Season 1 episode "Prime Suspect" of the television crime drama NUMB3RS.

On Feb. 2, 1999, a group led by H. te Riele completed factorization of RSA-140 into two 70-digit primes. In a preprint dated April 16, 2004, Aoki et al. factored RSA-150 into two 75-digit primes. On Aug. 22, 1999, a group led by H. te Riele completed factorization of RSA-155 into two 78-digit primes (te Riele 1999b, Peterson 1999). On December 2, Jens Franke circulated an email announcing factorization of the smallest prize number RSA-576 (Weisstein 2003). This factorization into two 87-digit factors was accomplished using a prime factorization algorithm known as the general number field sieve (GNFS). On May 9, 2005, the group led by Franke announced factorization of RSA-200 into two 100-digits primes (Weisstein 2005a), and in November 2005, the same group announced the factorization of RSA-674 (Weisstein 2005b).

On Jan. 7, 2010, Kleinjung announced factorization of the 768-bit, 232-digit number RSA-768 by the number field sieve, which is a record for factoring general integers. Both factors have 384 bits and 116 digits. Total sieving time was approximation 1500 AMD64 years (Kleinjung 2010, Kleinjung et al. 2010).

As the following table shows, while the Challenge has been withdrawn, most of the numbers RSA-704 to RSA-2048 have never been factored.

number decimal digits prize factored (references)
RSA-100 100   Apr. 1991
RSA-110 110   Apr. 1992
RSA-120 120   Jun. 1993
RSA-129 129 $100 Apr. 1994 (Leutwyler 1994, Cipra 1995)
RSA-130 130   Apr. 10, 1996
RSA-140 140   Feb. 2, 1999 (te Riele 1999a)
RSA-150 150   Apr. 6, 2004 (Aoki 2004)
RSA-155 155   Aug. 22, 1999 (te Riele 1999b, Peterson 1999)
RSA-160 160   Apr. 1, 2003 (Bahr et al. 2003)
RSA-200 200   May 9, 2005 (see Weisstein 2005a)
RSA-576 174 $10000 Dec. 3, 2003 (Franke 2003; see Weisstein 2003)
RSA-640 193 $20000 Nov. 4, 2005 (see Weisstein 2005b)
RSA-704 212 withdrawn Jul. 1, 2012 (Bai et al. 2012, Bai 2012)
RSA-768 232 withdrawn Dec. 12, 2009 (Kleinjung 2010, Kleinjung et al. 2010)
RSA-896 270 withdrawn  
RSA-1024 309 withdrawn  
RSA-1536 463 withdrawn  
RSA-2048 617 withdrawn  

REFERENCES:

Aoki, K.; Kida, Y.; Shimoyama, T.; and Ueda, H. "GNFS Factoring Statistics of RSA-100, 110, ..., 150." April 16, 2004. https://eprint.iacr.org/2004/095.pdf.

Bahr, F.; Franke, J.; Kleinjung, T.; Lochter, M.; and Böhm, M. "RSA-160." https://www.loria.fr/~zimmerma/records/rsa160.

Bai, S.; Thomé, E.; and Zimmerman, P. "Factorisation of RSA-704 with CADO-NSF." https://maths.anu.edu.au/~bai/paper/rsa704.pdf. Jul. 1, 2012.

Bai, S. "Factorization of RSA704." 2 Jul 2012. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1207&L=NMBRTHRY&F=&S=&P=923.

Cipra, B. "The Secret Life of Large Numbers." What's Happening in the Mathematical Sciences, 1995-1996, Vol. 3. Providence, RI: Amer. Math. Soc., pp. 90-99, 1996.

Cowie, J.; Dodson, B.; Elkenbracht-Huizing, R. M.; Lenstra, A. K.; Montgomery, P. L.; Zayer, J. A. "World Wide Number Field Sieve Factoring Record: On to 512 Bits." In Advances in Cryptology--ASIACRYPT '96 (Kyongju) (Ed. K. Kim and T. Matsumoto.) New York: Springer-Verlag, pp. 382-394, 1996.

Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 46-47, 2000.

Franke, J. "RSA576." Privately circulated email reposted to primenumbers Yahoo! Group. https://groups.yahoo.com/group/primenumbers/message/14113.

Gardner, M. "Mathematical Games: A New Kind of Cipher that Would Take Millions of Years to Break." Sci. Amer. 237, 120-124, Aug. 1977.

Klee, V. and Wagon, S. Old and New Unsolved Problems in Plane Geometry and Number Theory, rev. ed. Washington, DC: Math. Assoc. Amer., p. 223, 1991.

Kleinjung, T. et al. "Factorization of a 768-bit RSA Modulus." Version 1.0, Jan. 7, 2010. https://eprint.iacr.org/2010/006.pdf.

Kleinjung, T. "Factorization of a 768-bit RSA modulus." 7 Jan 2010. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1001&L=nmbrthry&T=0&F=&S=&P=719.

Leutwyler, K. "Superhack: Forty Quadrillion Years Early, a 129-Digit Code is Broken." Sci. Amer. 271, 17-20, 1994.

Leyland, P. ftp://sable.ox.ac.uk/pub/math/rsa129

Peterson, I. "Crunching Internet Security Codes." Sci. News 156, 221, Oct. 2, 1999.

RSA Laboratories.® "The RSA Factoring Challenge" https://www.rsa.com/rsalabs/node.asp?id=2092.

Taubes, G. "Small Army of Code-breakers Conquers a 129-Digit Giant." Science 264, 776-777, 1994.

te Riele, H. "Factorisation of RSA-140." 4 Feb 1999a. https://listserv.nodak.edu/scripts/wa.exe?A2=ind9902&L=nmbrthry&P=302.

te Riele, H. "New Factorization Record." 26 Aug 1999b. https://listserv.nodak.edu/scripts/wa.exe?A2=ind9908&L=nmbrthry&P=1905.

Weisstein, E. "RSA-576 Factored." MathWorld Headline News, Dec. 5, 2003. https://mathworld.wolfram.com/news/2003-12-05/rsa/.

Weisstein, E. "RSA-200 Factored." MathWorld Headline News, May. 10, 2005a. https://mathworld.wolfram.com/news/2005-05-10/rsa-200/.

Weisstein, E. "RSA-640 Factored." MathWorld Headline News, Nov. 8, 2005b. https://mathworld.wolfram.com/news/2005-11-08/rsa-640/.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.